• Title/Summary/Keyword: pitch level

Search Result 274, Processing Time 0.027 seconds

A Study of the Prosodic Characteristics of Homographs with Context Cues by Subjects with Right and Left Hemisphere Damage (문맥 내에서 좌우반구 손상자의 동음어에 대한 운율 산출 비교)

  • Lee, Myoung-Soon
    • Phonetics and Speech Sciences
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 2010
  • The purpose of this study was to examine the prosody characteristics of sentence-level utterances which contain homographs with context cues in patients with neurogenic communication disorders. Homographs which may be affected by prosody, especially tonic length features, were used to investigate this matter. The characteristics of tone, duration, pitch, and pitch peak were analyzed to examine the characteristics of prosody in patients with lesions in the left or right hemisphere and normal controls. The whole process was recorded using Praat 4.3.14 and for statistical analyses, three-way ANOVA and multiple comparative analyses, Chi-Square tests, and a one-way ANOVA were carried out using SPSS 12.0 for Windows. The conclusions of this study are as follows. First, the length of syllables and vowels in homographs in Korean was different depending on the meaning and was not significant between groups. Second, it was found that patients with lesions in the right hemisphere had significant difference on pitch. Third, it was found that frequency of pitch peak and tone in 'short' tone syllables were different between groups. The conclusion of this study found that the prosody of homographs between groups absolutely was not differentiated. Accordingly, more detailed studies of acoustic parameters and other parameters which the prosody characteristic between groups could be found are needed in the future.

  • PDF

Characteristics of Steam Gasification and Combustion of Naphtha Tar Pitch (납사타르피치의 연소 및 수증기 가스화 반응특성)

  • Kim, Uk Yeong;Son, Sung Mo;Kang, Suk Hwan;Kang, Yong;Kim, Sang Done;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.604-610
    • /
    • 2007
  • Characteristics of steam gasification and combustion of naphtha tar pitch, which is the bottom product of naphtha cracking process, were investigated by using the thermo gravimetric analyzer to develop the technology for obtaining syngas by using the naphtha tar pitch as a carbon source. Friedman's and Ozawa-Flynn-Wall method were used to calculate activation energy, reaction order and frequency factor of reaction rate constant for both of steam gasification and combustion. The activation energy of combustion of naphtha tar pitch based on the fractional conversion by Friedman's method was in the range of 41.58 ~ 68.14 kJ/g-mol when the fractional conversion level was in the range of 0.2~0.6, but 183.07~191.17 kJ/g-mol when the conversion level was 0.9~1.0, respectively. In case of steam gasification of naphtha tar pitch, the activation energy was in the range of 31.87~44.87 kJ/g-mol in the relatively lower conversion level (0.2~0.6), but 70.63~87.79 kJ/g-mol in the relatively higher conversion level (0.8~0.95), respectively. Those results exhibited that the steam gasification as well as combustion would occur by means of two steps such as devolitilization followed by combustion or gasification.

Prediction of Frequency Modulation of Discrete Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성 유동 해석에 의한 부등피치 횡류홴의 이산소음 주파수 변조 특성 예측)

  • Cho, Yong;Moon, Young-J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.658-664
    • /
    • 2002
  • Unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by a computational method. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer, and sound pressure is predicted using Curie's equation. The computed fan performance is favorably compared with experimental data, and also indicates that the performance is not significantly altered by the random pitch effect at ${\phi}>0.4$. In the present study, the narrow-band noise characteristics of three impellers with a uniform and two random Pitch (type-A and-B) blades are compared by the SPL (Sound Pressure Level) spectra, and their frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are also discussed.

  • PDF

The Reduction of Tire Pattern Noise Using Time-Frequency Transform (저소음 타이어 설계에 대한 시변주파수 분석 적용)

  • Hwang, S.W.;Bang, M.J.;Kim, S.J.;Cho, C.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.144-147
    • /
    • 2005
  • The tire is considered as one of the Important noise sources having an influence on vehicle's performance. The Pattern noise of a tire is the transmission sound of airborne noise. On smooth asphalt road, Pattern noise is amplified with the velocity. In recent, the study on the reduction of Pattern noise is energetically processed. Pattern noise is strongly related with pitch sequence. To reduce the pattern noise, tire's designer has to randomize the sequence of pitch. The FFT is a traditional method to evaluate the level of the randomization of the pitch sequence, but gives no information on time-varying, instantaneous frequency. In the study, we found that Time-Frequency transform is a useful method to non-stationary signal such as tire noise.

  • PDF

The Reduction of Tire Pattern Noise Using Time-frequency Transform (시변주파수 분석을 이용한 저소음 타이어 설계)

  • Hwang, S.W.;Bang, M.M.;Rho, K.H.;Kim, S.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.627-633
    • /
    • 2006
  • The tire is considered as one of the important noise sources having an influence on vehicle's performance. The Pattern noise of a tire is the transmission sound of airborne noise. On smooth asphalt road, Pattern noise is amplified with the velocity. In recent, the study on the reduction of Pattern noise is energetically processed. Pattern noise is strongly related with pitch sequence. To reduce the pattern noise, tire's designer has to randomize the sequence of pitch. The FFT is a traditional method to evaluate the level of the randomization of the pitch sequence, but gives no information on time-varying, instantaneous frequency. In the study, we found that Time-Frequency transform is a useful method to non-stationary signal such as tire noise.

Characteristics of the auditory evaluation of good impression using speech manipulation scripts (말소리 변조 스크립트를 이용한 호감도 청취평가 특징)

  • Kwon, Soonbok
    • Phonetics and Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.131-138
    • /
    • 2016
  • This study analyzes the characteristics of good impression using speech manipulation scripts and investigates the characteristics of preferred speech voice. Fourty male and female college students participated in this study. They have been exposed to the Gyeongsang dialect spoken by their friends and family for more than 15 years. Two sample voices(1 male and 1 female), considered as giving good impression, were subject to voice analysis. Two students were asked to read the sample paragraph of 'Walking' and their voice samples were analyzed through Praat. The collected speech data were manipulated into 4 different sets by changing pitch level, degree of loudness and speech rate. First, both men and women received good impression more from pitch-lowered sound than from the original one. Second, men tended to receive good impression more from slightly louder voice than from the natural-pitched one. Third, it was shown that men often felt more drowned to a voice at slightly faster speech rate than at the original speech rate. Overall, both male and female listeners favored lower pitch over the original pitch. Men tended to prefer louder voice sound while women preferred less loud one. Men received better impression at a lower speech rate but women at a faster speech rate.

Parallel sound change between segmental and suprasegmental properties: An individual level observation

  • Lee, Hyunjung
    • Phonetics and Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.23-29
    • /
    • 2016
  • The present study tested if individual speakers showing great sound change in segments (i.e., vowels and fricatives) also had innovative changing patterns in suprasegmental properties (i.e., lexical pitch accents) in Kyungsang Korean. The acoustic analysis at a group level first confirmed the presence of group level differences in distinguishing /ɨ-ʌ/ and /s-s'/ both of which had different phonemic distinction from Seoul Korean. Younger speakers had more innovative segmental change than older speakers, and even within the younger generation, female speakers produced more innovative phonetic variants than male speakers. Regarding the individual observation within the younger group, the younger speakers with large acoustic distinction in vowels and fricatives also showed acoustically less distinct accent patterns, indicating the innovative sound change pattern consistent across segment and suprasegmental properties. The group and individual observations suggested that linguistic innovators introduced new phonetic variants with consistent degree of changing pattern between segment and suprasegmental properties.

A Study on Improving Pitch Search for Vocoder (보코더에서 피치검색 성능개선에 관한 연구)

  • Baek, Geum-Ran;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.7
    • /
    • pp.419-426
    • /
    • 2012
  • The pitch searching is a vital process in a vocoder. Generally, the method of pitch searching is employed after highlighting the periodicity, where a correlation is identified with the signal by changing the interval of two pulses. When the correlation value reaches the peak, the pitch can be found by the pulse interval because it is the repetition interval with most striking period. However if the identified period happens to be one of half period, double period or triple period, this cannot be considered as the pitch period. Many methods were suggested to solve this problem. An inaccurate pitch could be obtained as well, when there is an interval where signal amplitude is not constant but varies abruptly in the frame. To solve this matter, searching the pitch by dividing a frame into various subframes is adopted, but too much calculation has to be followed while it leads the correct value. This paper suggests an algorithm to resolve these two problems. First, to search the pitch after advance correction of the signal energy level with an estimated overall energy change ratio in the frame before pitch search to reduce half period, double period and triple period is suggested. Second, to vary the number of subframes by predicting the amplitude change rate in the frame by the energy ratio obtained by the above-mentioned method is advised. If these two methods are applied, the pitch searching time can be reduced and the general pitch searching performance can be improved without affecting the sound quality in the synthesized signal.

Content-based Music Information Retrieval using Pitch Histogram (Pitch 히스토그램을 이용한 내용기반 음악 정보 검색)

  • 박만수;박철의;김회린;강경옥
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.2-7
    • /
    • 2004
  • In this paper, we proposed the content-based music information retrieval technique using some MPEG-7 low-level descriptors. Especially, pitch information and timbral features can be applied in music genre classification, music retrieval, or QBH(Query By Humming) because these can be modeling the stochasticpattern or timbral information of music signal. In this work, we restricted the music domain as O.S.T of movie or soap opera to apply broadcasting system. That is, the user can retrievalthe information of the unknown music using only an audio clip with a few seconds extracted from video content when background music sound greeted user's ear. We proposed the audio feature set organized by MPEG-7 descriptors and distance function by vector distance or ratio computation. Thus, we observed that the feature set organized by pitch information is superior to timbral spectral feature set and IFCR(Intra-Feature Component Ratio) is better than ED(Euclidean Distance) as a vector distance function. To evaluate music recognition, k-NN is used as a classifier

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF