Characteristics of Steam Gasification and Combustion of Naphtha Tar Pitch

납사타르피치의 연소 및 수증기 가스화 반응특성

  • Kim, Uk Yeong (School of Chemical Engineering, Chungnam National University) ;
  • Son, Sung Mo (School of Chemical Engineering, Chungnam National University) ;
  • Kang, Suk Hwan (School of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (School of Chemical Engineering, Chungnam National University) ;
  • Kim, Sang Done (Department Chemical and Biomolecular Engineering, KAIST) ;
  • Jung, Heon (Korea Institute of Enery Research)
  • 김욱영 (충남대학교 화학공학과) ;
  • 손성모 (충남대학교 화학공학과) ;
  • 강석환 (충남대학교 화학공학과) ;
  • 강용 (충남대학교 화학공학과) ;
  • 김상돈 (한국과학기술원 생명화학공학과) ;
  • 정헌 (한국에너지기술연구원)
  • Received : 2007.08.15
  • Accepted : 2007.09.05
  • Published : 2007.12.31

Abstract

Characteristics of steam gasification and combustion of naphtha tar pitch, which is the bottom product of naphtha cracking process, were investigated by using the thermo gravimetric analyzer to develop the technology for obtaining syngas by using the naphtha tar pitch as a carbon source. Friedman's and Ozawa-Flynn-Wall method were used to calculate activation energy, reaction order and frequency factor of reaction rate constant for both of steam gasification and combustion. The activation energy of combustion of naphtha tar pitch based on the fractional conversion by Friedman's method was in the range of 41.58 ~ 68.14 kJ/g-mol when the fractional conversion level was in the range of 0.2~0.6, but 183.07~191.17 kJ/g-mol when the conversion level was 0.9~1.0, respectively. In case of steam gasification of naphtha tar pitch, the activation energy was in the range of 31.87~44.87 kJ/g-mol in the relatively lower conversion level (0.2~0.6), but 70.63~87.79 kJ/g-mol in the relatively higher conversion level (0.8~0.95), respectively. Those results exhibited that the steam gasification as well as combustion would occur by means of two steps such as devolitilization followed by combustion or gasification.

납사타르피치의 연소 및 수증기 가스화의 반응특성을 알아보기 위하여 납사타르피치를 탄소원으로 사용하여 열중량분석을 수행하였다. 반응의 활성화에너지, 반응차수, 빈도인자 등을 구하기 위하여 Friedman 방법과 Ozawa-Flynn-Wall 방법이 사용되었다. Friedman 방법을 사용하여 반응전환에 따른 연소의 활성화에너지를 구하였는데, 0.2~0.6 정도의 전환이 일어났을 때는 활성화에너지가 41.6~68.1 kJ/g-mol이었다. 0.9~1.0 정도의 전환이 일어났을 때는 183.1~191.2kJ/g-mol이었다. 그리고 수증기 가스화에 대해서는, 0.2~0.6 반응전환에서 활성화에너지는 31.9~44.9 kJ/g-mol이었다. 0.8~0.95 전환에서는 70.6~87.8 kJ/g-mol이었다. 이러한 결과로 미루어보아 반응은 탈휘발화와 연소 또는 가스화 반응의 두 단계로 진행되는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국에너지기술연구원

References

  1. Jaber, J. O. and Probert, S. D., 'Reaction Kinetics of Fluidised Bed Gasification of Jordanian Oil Shales,' Int. J. Therm. Sci., 39(2), 295-304(2000) https://doi.org/10.1016/S1290-0729(00)00247-7
  2. Lee, S. Y., Kim, Y. J. and Kim, S. D., 'Gasification Characteristics of Waste Tire in an Internally Circulating Fluidized Bed.,' Korean Chem. Eng. Res., 39(1), 72-76(2001)
  3. Lee, W. J., Kim, S. D. and Song, B. H., 'Steam Gasification of an Australian Bituminous Coal in a Fluidized Bed,' Korean J. Chem. Eng., 19(6), 1091-1096(2002) https://doi.org/10.1007/BF02707238
  4. Altun, N. E., Hicyilmaz, C., Hwang, J. Y. and Bagci, A. S., 'Evaluation of a Turkish Low Quality Oil Shale by Flotation as a Clean Energy Source: Material Characterization and Determination of Flotation Behavior,' Fuel Processing Technol., 87(9), 783-801(2006) https://doi.org/10.1016/j.fuproc.2006.04.001
  5. Pan, Y. G., Velo, E., Roca, X., Many, J. J. and Puigjaner, L., 'Fluidized-bed Co-gasification of Residual Biomass/poor Coal Blends for Fuel Gas Production,' Fuel, 79(11), 1317-1326(2000) https://doi.org/10.1016/S0016-2361(99)00258-6
  6. Ponzio, A., Kalisz, S. and Blasiak, W., 'Effect of Operating Conditions on Tar and Gas Composition in High Temperature Air/steam Gasification (HTAG) of Plastic Containing Waste,' Fuel Processing Technol., 87(3), 223-233(2006) https://doi.org/10.1016/j.fuproc.2005.08.002
  7. Wall, T. F., Liu, G., Wu, H., Roberts, D. G., Benfell, K. E., Gupta, S., Lucas, J. A. and Harris, D. J., 'The Effects of Pressure on Coal Reactions During Pulverised Coal Combustion and Gasification', Progress in Energy and Comb. Sci., 28(5), 405-433(2002) https://doi.org/10.1016/S0360-1285(02)00007-2
  8. Lee, W. J., Kim, S. D. and Song, B. H., 'Steam Gasification of Coal with Salt Mixture of Potassium and Nickel in a Fluidized Bed Reactor', Korean J. Chem. Eng., 18(5), 640-645(2001) https://doi.org/10.1007/BF02706380
  9. Hanson, S., Patrick, J. W. and Walker, A., 'The Effect of Coal Particle Size on Pyrolysis and Steam Gasification,' Fuel, 81(5), 531-537(2002) https://doi.org/10.1016/S0016-2361(01)00153-3
  10. Hill, M. and Fott, P., 'Kinetics of Gasification of Czech Brown Coals', Fuel, 72(4), 525-529(1993) https://doi.org/10.1016/0016-2361(93)90112-F
  11. Bayarsaikhan, B., Sonoyama, N., Hosokai, S., Shimada, T., Hyashi, J., Li, C. and Chiba, T., 'Inhibition of Steam Gasification of Char by Volatiles in a Fluidized Bed Under Continuous Feeding of a Brown Coal', Fuel, 85(3), 340-349(2006) https://doi.org/10.1016/j.fuel.2005.06.001
  12. Belghit, A. and Issami, S. E., 'Hydrogen Production by Steam Gasification of Coal in Gas-solid Moving Bed Using Nuclear Heat', Energy Conv. Manag., 42(1), 81-99(2001) https://doi.org/10.1016/S0196-8904(00)00022-4
  13. In, S. J., Ryu, S. K. and Rhee, B. S., 'Effect of Stirring Speed and $N_{2}$-blowing Rate on Mesophase Formation from Naphtha Tar Pitch,' Korean Chem. Eng. Res., 27(3), 291-298(1989)
  14. Friedman, H. L., 'Kinetics of Thermal Degradation of Charforming Plastics from Thermogravimetry-Application to a Phenolic Plastic', J. Poly. Sci.: part C, 6(1), 183-195(1964)
  15. Kim, S. J., Lee, C. G., Song, P. S., Yun, J. S., Kang, Y., Kim, J. S. and Choi, M. J., 'Characteristics of Pyrolysis and Combustion Reaction of Waste Poystyrene,' J. Korean Ind. Eng. Chem, 14(5), 634-640(2003)
  16. Doyle, C. D., 'Estimating Isothermal Life from Thermogravimetric Data', J. Appl. Polym. Sci., 6(24), 639-642(1962) https://doi.org/10.1002/app.1962.070062406
  17. Flynn, J. H. and Wall, L. A., 'General Treatment of the Thermogravimetry of Polymers', J. Res. Natl. Bur. Stand., 70A(6), 487-523(1966) https://doi.org/10.6028/jres.070A.043
  18. Hamciuc, C., Vlad-Bubulac, T., Petreus, O. and Lisa, G., 'Kinetics of Thermal Degradation in Non-isothermal Conditions of Some Phosphorus-containing Polyesters and Polyesterimides,' European Polymer Journal, 43(3), 980-988(2007) https://doi.org/10.1016/j.eurpolymj.2006.12.018
  19. Ozawa, T., 'A New Method of Analyzing Thermogravimetric Data', Bull. Chem. Soc. Jpn., 38(11), 1881-1886(1965) https://doi.org/10.1246/bcsj.38.1881
  20. Pielichowski, K., 'Kinetic Analysis of the Thermal Decomposition of Polyaniline,' Solid State Ionics, 104(1), 123-132(1997) https://doi.org/10.1016/S0167-2738(97)00396-2
  21. Sekine, Y., Ishikawa, K., Kikuchi, E., Matsukata, M. and Akimoto, A., 'Reactivity and Structural Change of Coal Char During Steam Gasification,' Fuel, 85(2), 122-126(2006) https://doi.org/10.1016/j.fuel.2005.05.025