• Title/Summary/Keyword: pile foundations

Search Result 261, Processing Time 0.021 seconds

Analysis of Piled Piers Considering Riverbed Scouring (교각세굴을 고려한 말뚝기초의 해석)

  • Jeong, Sang-Seom;Suh, Jung-Ju;Won, Jin-Oh
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.43-50
    • /
    • 2002
  • This paper describes a simplified numerical procedure for analyzing the response of bridge pier foundations due to riverbed scouring. A computationally efficient algorithm to analyze the behavior of a pile group is proposed by considering soil-pile, pile-cap, and pile-fluid interactions. The complex phenomenon of the pile-soil interaction is modeled by discrete nonlinear soil springs (p-y, t-z and q-z curves). The pile-cap interaction is considered by geometric configuration of the piles in a group and connectivity conditions between piles and the cap. The pile-fluid interaction is incorporated into the procedure by reducing the stiffness of the soil-pile reactions as a result of nonlinearity and degradation of the soil stiffness with river bridge scouring. Through the numerical study, it is shown that the maximum bending moment increases with increasing scour depth. Thus it is desirable to check the stability elf pile groups based on soil-pile and pile-cap interactions by considering scouring depth in the riverbed.

3D numerical simulation of group-pile foundation subjected to horizontal cyclic loading (3차원 수치해석을 이용한 군말뚝기초의 반복수평하중재하실험에 대한 연구)

  • Jin, Youngji-Ji;Kim, Jin-Man;Choi, Bong-Hyuck;Lee, Dea-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.515-518
    • /
    • 2010
  • Horizontal forces may form a major part of the loading system for structures supported on pile groups. It is known that during a strong earthquake, the dynamic behavior of a group-pile foundation is related not only to the inertial force coming from the superstructures but also to the deformation of the surrounding ground. Therefore, it is necessary to understand the behaviors of the group-pile foundations and superstructures during major earthquakes. In this paper, numerical simulation of real-scale group-pile foundation subjected to horizontal cyclic loading is conducted by using a program named as DBLEAVES. In the analysis, nonlinear behaviors of ground and piles are described by cyclic mobility model and axial force dependent model (AFD model). The purpose of this paper is to prove availability of the analysis method by comparing numerical results and test results.

  • PDF

Viscous fluid characteristics of liquefied soils and behavior of pile subjected to flow of liquefied soils (액상화된 지반의 점성 유체 특성과 그 흐름이 말뚝의 거동에 미치는 영향 분석)

  • Hwang, Jae-Ik;Kim, Chang-Yeob;Chung, Choong-Ki;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.722-729
    • /
    • 2004
  • The horizontal movement of sloping ground due to flow liquefaction has caused many pile foundations to fail, especially those in ports and harbor structures. In this study, a virtual case is assumed in which flow liquefaction is induced by earthquake loads in a fully saturated infinite sand slope with a single pile installation. Under the assumption that the movement of liquefied ground is viscous fluid flow, the influence of ground movement due to flow liquefaction on the pile behavior was analyzed. Since the liquefied soil is assumed as a viscous fluid, its viscosity must be evaluated, and the viscosity was estimated by the dropping ball method ,md the pulling bar method. Finally, the influence of the flow of liquefied soil on a single pile installed in an infinite slope was analyzed by a numerical method.

  • PDF

PRaFULL: A method for the analysis of piled raft foundation under lateral load

  • Stacul, Stefano;Squeglia, Nunziante;Russo, Gianpiero
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • A new code, called PRaFULL (Piled Raft Foundation Under Lateral Load), was developed for the analysis of laterally loaded Combined Pile Raft Foundation (CPRF). The proposed code considers the contribution offered by the raft-soil contact and the interactions between all the CPRF system components. The nonlinear behaviour of the reinforced concrete pile and the soil are accounted. As shallower soil layers are of great relevance in the lateral response of a pile foundation, PRaFULL includes the possibility to consider layered soil profiles with appropriate properties. The shadowing effect on the ultimate soil pressure is accounted, when dealing with pile groups, as proposed by the Strain Wedge Model. PRaFULL BEM code obviously requires less computational resources compared to FEM (Finite Element Method) or FDM (Finite Difference Method) codes. The proposed code was validated in the linear elastic range by comparisons with the code APRAF (Analysis of Piled Raft Foundations). The reliability of the procedure to predict piled raft performance was then verified in nonlinear range by comparisons with both centrifuge tests and computer code PRAB.

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.

Performance evaluation of the lightweight concrete tapered piles under hammer impacts

  • Tavasoli, Omid;Ghazavi, Mahmoud
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Lightweight concrete (LWC) provides an attractive alternative to conventional piles by improving the durability of deep foundations. In this paper, the drivability of cylindrical and tapered piles made of lightweight and common concrete (CC) under hammer impacts was investigated by performing field tests and numerical analysis. The different concrete mixtures were considered to compare the mechanical properties of light aggregate which replaced instead of the natural aggregate. Driving tests were also conducted on different piles to determine how the pile material and geometric configurations affect driving performance. The results indicated that the tapering shape has an appropriate effect on the drivability of piles and although lower driving stresses are induced in the LWC tapered pile, their final penetration rate was more than that of CC cylindrical pile under hammer impact. Also by analyzing wave propagation in the different rods, it was concluded that the LWC piles with greater velocity than others had better performance in pile driving phenomena. Furthermore, LWC piles can be driven more easily into the ground than cylindrical concrete piles sometimes up to 50% lower hammer impacts and results in important energy saving.

Evaluation of Shear Load-transfer Barrette Pile in Sandy Soils (사질지반에서의 바렛말뚝의 주면하중전이 거동 평가)

  • Lee, Sang-Rae;Park, Seong-Wan;Lim, Dae-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.5-13
    • /
    • 2010
  • Recently, the use of barrette pile has remarkably increased for high-rise building and bridge foundations. However, relatively few studies have been made for analyzing barrette pile behavior by considering shear load transfer on interface between pile and soils. Therefore, in this paper, an empirically derived equation is proposed. This equation correlates the load transfer curve of barrette piles with the N value from field standard penetration test based on full-scale load tests. The results from all procedures are presented. In addition, the effect of interface on pile-soil is evaluated using 3-D non-linear finite element method and verified with the field data.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구)

  • Lee, Seung-Hoon;Park, Young-Ho;Song, Myung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.83-94
    • /
    • 2007
  • Piled raft foundations have been highlighted as an economical design concept of pile foundations in recent years. However, piled raft foundations have not been widely used in Korea due to the difficulty in estimating the complex interaction effects among rafts, piles and soils. The authors developed an effective numerical program to analyze the behavior of piled raft foundations for practical design purposes and presented it briefly in this paper. The developed numerical program simulates the raft as a flexible plate consisting of finite elements with eight nodes and the raft is supported by a series of elastic springs representing subsoils and piles. This study imported another model to simulate pile groups considering non-linear behavior and interaction effects. The apparent stiffnesses of the soils and piles were estimated by iterative calculations to satisfy the compatibility between those two components and the behavior of piled raft foundations can be predicted using these stiffnesses. For the verification of the program, the analysis results about some example problems were compared with those of rigorous three dimensional finite element analysis and other approximate analysis methods. It was found that the program can analyze non-linear behaviors and interaction effects efficiently in multi-layered soils and has sufficient capabilities for application to practical analysis and design of piled raft foundations.

Optimum Design of Piled Raft Foundations using Genetic Algorithm (유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계)

  • 김홍택;강인규;황정순;전응진;고용일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.415-422
    • /
    • 1999
  • This paper describes a new optimum design approach for piled raft foundations using the genetic algorithm. The objective function considered is the cost-based total weight of raft and piles. The genetic algorithm is a search or optimization technique based on nature selection. Successive generation evolves more fit individuals on the basis of the Darwinism survival of the fittest. In formulating the genetic algorithm-based optimum design procedure, the analysis of piled raft foundations is peformed based on the 'hybrid'approach developed by Clancy(1993), and also the simple genetic algorithm proposed by the Goldberg(1989) is used. To evaluate a validity of the optimum design procedure proposed based on the genetic algorithm, comparisons regarding optimal pile placement for minimizing differential settlements by Kim et at.(1999) are made. In addition using proposed design procedure, design examples are presented.

  • PDF

Uplift Testing and Load-transfer Characteristics of Model Drilled Shafts in Compacted Weathered Granite Soils (화강풍화토 지반에 타설된 소형 현장 타설 말뚝의 인발시험 및 하중 전이 특성)

  • 임유진;서석현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.105-117
    • /
    • 2002
  • In the design of foundations for the super-structures such as transmission towers and oil-platforms, the foundations must be considered as a medium to resist cyclic tensile forces. In this study, the uplift capacity of the drilled shaft used as the medium resisting to this pattern of forces is investigated by performing cyclic uplift test of a small model-drilled shaft constructed in compacted granite soil in a steel chamber. In this test, the behavioral difference between a pile loaded on the top of the pile and a pile loaded at the bottom of the pile was investigated intensively. The load transfer curves obtained from the test were investigated by changing the confining pressure in the chamber. The load tests also included creep test and cyclic test. It is found from the tests that uplift capacity of the shaft loaded at the bottom is greater than that of the shaft loaded on the top of the pile. It is found also from the creep test that the pile loaded at the bottom was more stable than the shaft loaded on the top. If a pile loaded at the bottom is pre-tensioned, the pile will be most effective to the creep displacement. It is found also from the cyclic tests that apparent secant modulus obtained in a cycle of the load increases with the number of cycles.