• Title/Summary/Keyword: pile driving

Search Result 184, Processing Time 0.028 seconds

Reliability Based Pile Bearing Capacity Evaluation (신뢰도에 근거한 말뚝의 지지력 평가)

  • Lee, In-Mo;Jo, Guk-Hwan;Lee, Jeong-Hak
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.9-22
    • /
    • 1995
  • The purpose of this study is to propose safety factors of pile bearing capacity based on the reliability analysis. Each prediction method involves various degrees of uncertainties. To account for these uncertainties in a systematic way, the ratios of the measured bearing capacity from pile load tests to the predicted bearing capacity are represented in the form of a probability density function. The safety factor for each design method is obtained so that the probability of pile foundation failure is less than 10-3. The Bayesian theorem is applied in a way that the distribution using static formulae is assumed to be the A-prior and the distribution using dynamic formulae or wave equation based methods is assumed to be the likelihood, and these two are combined to obtain the posterior which has the reduced uncertainty. The results of this study show that static formulae of the pile bearing capacity using the 5.p.7. N-value as well as dynamic formulae are highly unreliable and have to have the safety factor more than 7.4 : the wave equation analysis using PDA(Pile Driving Analyzer) system the most reliable with the safety factor close to 2.7. The safety factor could be reduced certain amount by adoption the Bayes methodology in pile design.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

A Study on the Collapse Reason by Slope Stability Analysis Considering Construction Stages (시공단계를 고려한 비탈면의 안정성 검토를 통한 비탈면 활동원인 연구)

  • Byun, Yoseph;Jang, Hyeonkil;Jung, Kyoungsik;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.25-31
    • /
    • 2011
  • In recent rainy seasons, severe rain storms have caused frequent reinforced retaining wall collapses and slope sliding which have lead to casualties. In this paper, investigating cases of reinforced retaining wall failure, the causes of cracks in reinforced retaining wall and slope sliding have been examined, and a finite element analysis considering the construction phase has been done to analyze the cause and characteristics of slope sliding. As a result, reinforced retaining wall displacement has increased due to heavy rain storms and the increase size has been shown to be large. From these results, it has been analyzed that pile driving can have an effect on the collapse of reinforced retaining walls.

Development of the Automated Vertical Controllable Pilot-type Equipment for Improving Construction Performance of PHC Piles (PHC 파일 시공성능향상을 위한 연직 자동제어 파일롯타입의 개발)

  • Cho Chang-Yeon;Lee Junbok;Kim Han-Soo;Kim Jeoung-Tae;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.72-80
    • /
    • 2004
  • The objective of the research is to develop the automated vertical controllable pilot-type equipment for PHC piles. The motivation for the research is that inherent problems related to vertical control during pile driving. The paper explains the current vertical control methods and problems, design and manufacturing of the pilot-type automated equipment and its testing and discussions of the results.

Applicability of CPT-based Toe Bearing Capacity of PHC Driven Piles (PHC 항타말뚝에 대한 CPT 선단 지지력 산정식의 적용성)

  • Le, Chi Hung;Chung, Sung-Gyo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.107-118
    • /
    • 2009
  • As CPT penetration tends to show a similar behavior to that of pile driving, a number of methods for estimating the toe bearing capacity of piles based on CPT data have been proposed. To evaluate the applicability of the methods in this country, a total of 172 dynamic load tests data on PHC piles and 82 CPT data at a site in the Nakdong River estuary were collected. A specific four-step procedure was adopted for the selection of the reliable data, and statistical techniques were then applied to the analysis of the applicability. The results indicated that among a total of 10 CPT-based methods applied, the best one is the Aoki method (1975), followed by the LCPC (1982), ICP (2005) methods and others.

Comparative Study between Design Methods and Pile Load Tests for Bearing Capacity of Driven PHC Piles in the Nakdong River Delta (낙동강 삼각주에 항타된 PHC말뚝의 지지력을 위한 재하시험과 지지력 공식의 비교연구)

  • Dung, N.T.;Chung, S.G.;Kim, S.R.;Chung, J.G.
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.61-75
    • /
    • 2007
  • Deep foundations have been popularly installed in hard stratum such as gravels or rocks in Korea. However, it is necessary to consider sand or sandy gravel layers that locate at the mid-depths as the bearing stratum of piles in the thick Nakdong River deltaic deposits, as done in the Chaophraya (Bangkok) and Mississippi River deltas. This study was focused on the finding of suitable methods for estimating bearing capacity when driving prestressed high-strength concrete (PHC) piles to a required depth in the deltaic area. Ground investigation was performed at five locations of two sites in the deltaic area. Bearing capacity of the driven piles has been computed using a number of proposed methods such as CPT-based and other analytical methods, based on the ground investigation and comparison one another other. Five PDA (pile driving analyzer) tests were systematically carried out at the whole depths of embedded piles, which is a well-blown useful technique for the purposes. As the results, the bearing capacities calculated by various methods were compared with the PDA and static load testing results. It was found that the shaft resistance is significantly governed by set-up effects and then the long-term value agrees well with that of the $\beta$ method. Also, the design methods for toe resistance were determined based on the SLT result, rather than PDA results that led to underestimation. Moreover, using the CPT results, appropriate methods were proposed for calculating the bearing capacity of the piles in the area.

Evaluation of Allowable Bearing Capacity of 600 mm Diameter Preboring PHC Piles Using Dynamic Load Test (직경 600mm PHC 매입말뚝의 동재하시험을 통한 허용 지지력 평가)

  • Woo, Gyu-Seong;Park, Jong-Bae;Seo, Mi-Jeong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.61-72
    • /
    • 2016
  • For the construction of high-rise structures and the optimized foundation design, the use of the large-diameter PHC pile has increased. Especially, the use of the 600 mm diameter PHC pile has significantly increased. In this study, for the evaluation of the suitability of the current design practice, the 46 dynamic pile load tests, which were carried out in the 600 mm diameter preboring PHC pile, are analyzed. The end bearing capacity is obtained from the end of initial driving test and the shaft capacity is estimated from the restrike test. The allowable capacities estimated by the dynamic load test are compared with those based on the current design practice. The analyses show that the allowable end bearing capacity evaluated by the dynamic pile load test is greater than the design practice in most piles. The allowable shaft capacity, however, is smaller than the design practice in many piles. The higher end bearing capacity and the smaller shaft capacity may result from the improvement of the drilling equipment and the increase in the penetration depth. Thus, the portion of the end bearing capacity in the total capacity increases.

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Study on the Rational Construction Method Using Analysis of the Case Study of PHC Pile Foundation in Song-Do Area (송도지역 내 PHC 말뚝기초 적용사례분석을 통한 적정 시공방법 연구)

  • Lee, Byengho;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Song-Do international city is the area developed in large-scale land reclamation. Song-Do area consists of reclamation layer, sedimentary layer(loose silt, soft clay and sand alternating) and residual layer from the ground surface. Therefore, using pile foundation is inevitable to build structures safely. In this area, driven PHC piles have been generally constructed in terms of environmental and economic conditions. As a result of analyzing 4 sites in Song-Do district 5 and 7 recently, the method of driving pile has many problems because of existence of rigid soil in sedimentary layer and installation of more than 30m piles. In this case, when installing piles by drive after pre-boring up to appropriate depth, the results of constructability analysis were very good. And in the economic efficiency, although 4% of construction cost rose, it was a very slight increase in comparison with improvement of workability. In the case of the stability, more than 70% compared to the allowable stress of piles was satisfied through the load test. As a result, when PHC piles is installed in Song-Do district, the proper construction method is that piles are located at bearing layer after boring rigid sand layer.