• Title/Summary/Keyword: pier

Search Result 887, Processing Time 0.028 seconds

A Study on the Characteristics of Bearing Capacity for Rammed Aggregate Pier in Sand (사질토지반에서 짧은 쇄석다짐말뚝의 배치형태에 따른 지지력특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Young-Hun;Yoo, Woo-Hyun;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.195-198
    • /
    • 2009
  • Rammed Aggregate Pier method is intermediate foundation of deep and shallow foundation, it has been built on world wide. But the investigation and research in domestic is not accomplished. In this paper, examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from differenciate the spacing of piles, namely installed rammed aggregate pier. Strain control test was conducted to determine the bearing capacities of the piers; 20mm, 30mm and 40mm diameter drilling equipment to drill holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, the space between each piers narrowed, settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, allows greater chances to have resistance to deformation, shows improved stability of structures.

  • PDF

Development of BIM Based Information Model Interface Module for a Modular Pier (모듈러 교각의 BIM 기반 정보 모델 인터페이스 모듈 개발)

  • Kim, Dong-Wook;Lee, Kwang-Myong;Nam, Sang-Hyeok
    • Journal of KIBIM
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Modular technology has become a major issue of the construction industries to enhance their productivity. Modular bridge construction generally requires the data exchange between the contractors, designers, fabricators and constructors. Therefore, a readily accessible information model interface module based on BIM technology is essential for their communication during a project life-cycle. In this study, BIM based information model interface module for a modular pier was developed. For the information models, the PBS(Product Breakdown Structure) and LOD(Level of Development) were defined. Next, all components of a modular pier were conducted by the parametric modeling technique, and then 3D cell library interface was developed. An nterface module was also developed using VBA(Visua basic Application) for exchanging a data from 3D model library to other softwares such as Microstation, AutoCad and Excel and was connected with MS Access database. The developed information model interface module would improve the design quality of the modular pier and reduce the time and cost for design. Updated 3D information models could be utilized for the fabrication, assembly, and construction process for modular piers.

Seismic behavior of thin-walled CFST pier-to-base connections with tube confined RC encasement

  • Xuanding Wang;Yue Liao;Jiepeng Liu;Ligui Yang;Xuhong Zhou
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.217-235
    • /
    • 2024
  • Concrete-filled steel tubes (CFSTs) nowadays are widely used as the main parts of momentous structures, and its connection has gained increasing attention as the complexity in configuration and load transfer mechanism. This paper proposes a novel CFST pier-to-footing incorporating tube-confined RC encasement. Such an innovative approach offers several benefits, including expedited on-site assembly, effective confinement, and collision resistance and corrosion resistance. The seismic behavior of such CFST pier-to-footing connection was studied by testing eight specimens under quasi-static cyclic lateral load. In the experimental research, the influences on the seismic behavior and the order of plastic hinge formation were discussed in detail by changing the footing height, axial compression ratio, number and length of anchored bars, and type of confining tube. All the specimens showed sufficient ductility and energy dissipation, without significant strength degradation. There is no obvious failure in the confined footing, while local buckling can be found in the critical section of the pier. It suggests that the footing provides satisfactory strength protection for the connection.

An Analysis of the Image and Visual Preference of a Light Rail Pier according to Aesthetic Styles (경전철 교각의 미관개선유형별 이미지 및 시각적 선호도 분석)

  • Jung, Sung-Gwan;Kang, Dong-Hyun;Shin, Jae-Yun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.15-26
    • /
    • 2015
  • The Daegu Metropolitan Transit Corporation Advisory Committee has chosen 5 styles of bridge-pier designs, including coating, graphic, planting, billboard and safety-facility style, based on the results of landscape simulations from a previous study. This study was conducted to investigate citizen's preferences and emotional images for each style of bridge-pier design, by aiming at the pilot urban landscape improvement section from Daebong Bridge in Suseong Gu to the crossroads near Dongseong Elementary School in Daegu Metropolitan City. The questionnaire was drawn up regarding the urban landscape improvement plans applied to the research area, and the questions were about citizens' perception of bridge-pier structures generated by constructing a light rail transit, important factors to consider when designing bridge piers, preferences for each style of bridge-pier design and emotional impact. 60.4% of the survey participants were found to perceive bridge-pier structures as unattractive, so it was necessary to improve them aesthetically. Regarding visual factors of bridge-pier designs, color was most important at 5.81, followed by form at 5.57. Regarding aesthetic component factors, harmony was most important at 6.07, followed by amenity at 6.00. In the survey participants' preference for each bridge-pier design, the graphic style was preferred most at 4.14, followed by the planting style. In emotional adjectives used for each bridge-pier design, the coating style, the safety-facility style and the non-treatment style showed similar results, and all of these styles were evaluated as artificial, lifeless and desolate. The graphic style and the billboard style showed different tendencies, depending on visual factors and aesthetic component factors applied to the graphic design used for these two bridge-pier styles. Since natural materials were used for the planting style, however, it showed high preference for such emotional images as natural and lively. The emotional adjective 'amiable' was found to affect citizens' preferences for each bridge-pier aesthetic improvement plan most, and it was also analyzed to have an effect on all the styles of bridge-pier designs. To improve the landscape of a light rail transit being constructed inside the urban area, this study quantitatively extracted citizens' preferences and emotional adjective for every style of bridge-pier design applied to the pilot urban landscape improvement section, and it is expected that the results of this study will be used as basic data to improve the landscape of bridge piers.

Seismic Upgrading of Existing Circular RC Pier with Steel Jacket (강판보강에 의한 운형 RC 교각의 내진성능 향상)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.341-348
    • /
    • 2000
  • The existing solid circular RC pier without seismic detailing is found to have poor ductility due to the premature bond failure of lap spliced longitudinal bars. The steel-jacket was introduced to prevent this unexpected type of failure. The nonlinear behavior and he seismic performance of the retrofitted pier were examined through the scale model test and compared with those of existing one. It is confirmed from the test results that the steel-jacket retrofitting can be used as an measure to improve seismic performance considerably.

  • PDF

Bridge Foundation and Scour (교량기초와 세굴)

  • 곽기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.168-187
    • /
    • 2002
  • Scour is the physical or chemical attack of flowing water which excavates and carries away material from stream beds and banks. Especially, hydraulic structures such as bridge piers and abutments placed in the channel causes the changes of the flow pattern like acceleration, the formation of vortices, and scour around the structures. Channel scour, especially bridge pier scour is the leading cause of bridge failures. It is very important to apply appropriate methods for both of scour analysis and protection. In this paper, several methods world-widely used for bridge scour analysis and protection are introduced and compared.

  • PDF

Investigation of ship collision with floating pier structures

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.319-327
    • /
    • 2014
  • This study investigated the collision of ships withfloating pier structures. The nature of the collision phenomenon is complex, and the understanding of it has developed through the modelling of offshore structures. ABAQUS software was used to investigate the collision phenomenon. The interaction between the ship and structural system was modelled, and the stress distribution both at thetime of collision and afterwardswasobserved and modelled. The strain energy absorption by different structural partswas calculated and comparisonswere made.

Investigation of ship collision with floating pier structures

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid
    • Interaction and multiscale mechanics
    • /
    • v.7 no.1
    • /
    • pp.563-571
    • /
    • 2014
  • This study investigated the collision of ships withfloating pier structures. The nature of the collision phenomenon is complex, and the understanding of it has developed through the modelling of offshore structures. ABAQUS software was used to investigate the collision phenomenon. The interaction between the ship and structural system was modelled, and the stress distribution both at thetime of collision and afterwardswasobserved and modelled. The strain energy absorption by different structural partswas calculated and comparisonswere made.

Earthquake Response Analysis of Bridges with Soil-Structure Interaction and Pier Nonlinearity (지반-구조물 상호작용과 교각의 비선형성을 고려한 교량의 지진응답해석)

  • 이종세;최준성;권오신
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.415-421
    • /
    • 2003
  • With the increasing possibility of earthquake occurrence, seismic safety of bridges has become one of the most important social issues in Korea. In this study, a nonlinear earthquake response analysis is carried out for a real bridge by incorporating soil-structure interaction and pier nonlinearity. The material nonlinearity of the bridge pier is realized by utilizing SAP2000 whereas the soil-structure interaction is analized in time domain by adapting KIESSI. The numerical results are compared to those of the models without considering the effects.

  • PDF

Seismic Evaluation of concrete-Filled Steel Piers with Secondary Reinforcement (보조보강재가 있는 콘크리트 충전 강교각의 내진성능 평가)

  • 박병기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.349-356
    • /
    • 2000
  • Strenght and ductility are major factors in the aseismic design of a bridge pier. In spite of good performance in both steel piers have not been used widely due to high cost. But with the filled-in concrete the steel pier have advantages compare to the steel pier only such as improved strength ductility fast construction small section and reasonable cost. In this paper concrete-filled steel piers are tested using quasi-static cyclic lateral load with constant axial load to evaluate the performance. The secondary reinforcement devices such as bolts corner plate and turn buckle are used inside of the piers to improve the ductility with minimum additional cost. Test results shows filled-in concrete and secondary reinforcement devices increase the strength and the ductility of the steel pier.

  • PDF