• Title/Summary/Keyword: physiological roles

Search Result 380, Processing Time 0.024 seconds

Potential Roles of Protease Inhibitors in Cancer Progression

  • Yang, Peng;Li, Zhuo-Yu;Li, Han-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8047-8052
    • /
    • 2016
  • Proteases are important molecules that are involved in many key physiological processes. Protease signaling pathways are strictly controlled, and disorders in protease activity can result in pathological changes such as cardiovascular and inflammatory diseases, cancer and neurological disorders. Many proteases have been associated with increasing tumor metastasis in various human cancers, suggesting important functional roles in the metastatic process because of their ability to degrade the extracellular matrix barrier. Proteases are also capable of cleaving non-extracellular matrix molecules. Inhibitors of proteases to some extent can reduce invasion and metastasis of cancer cells, and slow down cancer progression. In this review, we focus on the role of a few proteases and their inhibitors in tumors as a basis for cancer prognostication and therapy.

Brain Reward Circuits in Morphine Addiction

  • Kim, Juhwan;Ham, Suji;Hong, Heeok;Moon, Changjong;Im, Heh-In
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.645-653
    • /
    • 2016
  • Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.

Ultrastructural localization of 28 kDa glutathione S-transferase in adult Clonorchis sinensis

  • Hong, Sung-Jong;Yu, Jae-Ran;Kang, Shin-Yong
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.4
    • /
    • pp.173-176
    • /
    • 2002
  • Glutathione S-transferase (28GST) with molecular mass of 28 kDa is an anti-oxidant enzyme abundant in Clonorchis sinensis. In adult C. sinensis, 28GST was localized in tegumental syncytium, cytons, parenchyma, and sperm tails examined by immunoelectron microscopy. C. sinensis 28GST was earlier found to neutralize bio-reactive compounds and to be rich in eggs. Accordingly. it is suggested that 28GST plays important roles in phase II defense system and physiological roles in worm fecundity of C. sinensis.

Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology

  • Valencia, McNeil;Kim, Sung Rae;Jang, Yeseul;Lee, Sung Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.605-614
    • /
    • 2021
  • Autophagy is an important degradative pathway that eliminates misfolded proteins and damaged organelles from cells. Autophagy is crucial for neuronal homeostasis and function. A lack of or deficiency in autophagy leads to the accumulation of protein aggregates, which are associated with several neurodegenerative diseases. Compared with non-neuronal cells, neurons exhibit rapid autophagic flux because damaged organelles or protein aggregates cannot be diluted in post-mitotic cells; because of this, these cells exhibit characteristic features of autophagy, such as compartment-specific autophagy, which depends on polarized structures and rapid autophagy flux. In addition, neurons exhibit compartment-specific autophagy, which depends on polarized structures. Neuronal autophagy may have additional physiological roles other than amino acid recycling. In this review, we focus on the characteristics and regulatory factors of neuronal autophagy. We also describe intracellular selective autophagy in neurons and its association with neurodegenerative diseases.

Vitamin D and Metabolic Diseases: Growing Roles of Vitamin D

  • Park, Jung Eun;Pichiah, Tirupathi;Cha, Youn-Soo
    • Journal of Obesity & Metabolic Syndrome
    • /
    • v.27 no.4
    • /
    • pp.223-232
    • /
    • 2018
  • Vitamin D, a free sunshine vitamin available for mankind from nature, is capable to avert many health-related critical circumstances. Vitamin D is no more regarded as a nutrient involved in bone metabolism alone. The presence of vitamin D receptor in a number of tissues implies that vitamin D has various physiological roles apart from calcium and phosphorus metabolism. Low serum vitamin D has been found to be associated with various types of metabolic illness such as obesity, diabetes mellitus, insulin resistance, cardiovascular diseases including hypertension. Various studies reported that vitamin D insufficiency or deficiency in linked with metabolic syndrome risk. This review focuses on various metabolic diseases and its relationship with serum vitamin D status.

Bile Acids and the Metabolic Disorders (담즙산과 대사질환)

  • Roh, Ji Hye;Yoon, Jeong-Hyun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.28 no.4
    • /
    • pp.273-278
    • /
    • 2018
  • Bile acids are major constituents of bile and known to help absorb dietary fat and fat-soluble vitamins in the gastrointestinal tract. In the past few decades, many studies have shown that bile acids not only play a role in fat digestion but also function as broad range of signal transduction hormones by binding to various receptors present in cell membranes or nuclei. Bile acid receptors are distributed in a wide range of organs and tissues in the human body. They perform multitudes of physiological functions with complex mechanisms. When bile acids bind to their receptors, they regulate fat and glucose metabolism in a tissue-specific way. In addition, bile acids are shown to inhibit inflammation and fibrosis in the liver. Considering the roles of bile acids as metabolic regulators, bile acids and their receptors can be very attractive targets in treating metabolic disorders. In the future, if roles of bile acids and their receptors are further clarified, they will be the novel target of drugs in the treatment of various metabolic diseases.

The complex role of extracellular vesicles in HIV infection

  • Jung-Hyun Lee
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.335-340
    • /
    • 2023
  • During normal physiological and abnormal pathophysiological conditions, all cells release membrane vesicles, termed extracellular vesicles (EVs). Growing evidence has revealed that EVs act as important messengers in intercellular communication. EVs play emerging roles in cellular responses and the modulation of immune responses during virus infection. EVs contribute to triggering antiviral responses to restrict virus infection and replication. Conversely, the role of EVs in the facilitation of virus spread and pathogenesis has been widely documented. Depending on the cell of origin, EVs carry effector functions from one cell to the other by horizontal transfer of their bioactive cargoes, including DNA, RNA, proteins, lipids, and metabolites. The diverse constituents of EVs can reflect the altered states of cells or tissues during virus infection, thereby offering a diagnostic readout. The exchanges of cellular and/or viral components by EVs can inform the therapeutic potential of EVs for infectious diseases. This review discusses recent advances of EVs to explore the complex roles of EVs during virus infection and their therapeutic potential, focusing on HIV-1.

Direct Conversion to Achieve Glial Cell Fates: Oligodendrocytes and Schwann Cells

  • Wonjin Yun;Yong Jun Kim;Gabsang Lee
    • International Journal of Stem Cells
    • /
    • v.15 no.1
    • /
    • pp.14-25
    • /
    • 2022
  • Glia have been known for its pivotal roles in physiological and pathological conditions in the nervous system. To study glial biology, multiple approaches have been applied to utilize glial cells for research, including stem cell-based technologies. Human glial cells differentiated from pluripotent stem cells are now available, allowing us to study the structural and functional roles of glia in the nervous system, although the efficiency is still low. Direct conversion is an advanced strategy governing fate conversion of diverse cell types directly into the desired lineage. This novel strategy stands as a promising approach for preliminary research and regenerative medicine. Direct conversion employs genetic and environmental cues to change cell fate to that with the required functional cell properties while retaining maturity-related molecular features. As an alternative method, it is now possible to obtain a variety of mature cell populations that could not be obtained using conventional differentiation methods. This review summarizes current achievements in obtaining glia, particularly oligodendrocytes and Schwann cells.

Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy

  • Yadav, Lalita;Puri, Naveen;Rastogi, Varun;Satpute, Pranali;Ahmad, Riyaz;Kaur, Geetpriya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1085-1091
    • /
    • 2014
  • Matrix metalloproteinases (MMPs) are a family of zinc dependent extracellular matrix (ECM) remodelling endopeptidases having the ability to degrade almost all components of extracellular matrix and implicated in various physiological as well as pathological processes. Carcinogenesis is a multistage process in which alteration of the microenvironment is required for conversion of normal tissue to a tumour. Extracellular matrix remodelling proteinases such as MMPs are principal mediators of alterations observed in the microenvironment during carcinogenesis and according to recent concepts not only have roles in invasion or late stages of cancer but also in regulating initial steps of carcinogenesis in a favourable or unfavourable manner. Establishment of relationships between MMP overproduction and cancer progression has stimulated the development of inhibitors that block proteolytic activity of these enzymes. In this review we discuss the MMP general structure, classification, regulation roles in relation to hallmarks of cancer and as targets for therapeutic intervention.

Insights into the Diverse Roles of miR-205 in Human Cancers

  • Orang, Ayla Valinezhad;Safaralizadeh, Reza;Feizi, Mohammad Ali Hosseinpour
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.577-583
    • /
    • 2014
  • The recent discovery of tiny microRNAs (miRNAs) has brought about awareness of a new class of regulators of diverse pathways in many physiological and pathological processes, such as tumorigenesis. They modulate gene expression by targeting plethora of mRNAs, mostly reducing the protein yield of a targeted mRNA. With accumulation of information on characteristics of miR-205, complex and in some cases converse roles of miR-205 in tumor initiation, progression and metastasis are emerging. miR-205 acts either as an oncogene via facilitating tumor initiation and proliferation, or in some cases as a tumor suppressor through inhibiting proliferation and invasion. The aim of this review is to discuss miR-205 roles in different types of cancers. Given the critical effects of deregulated miR-205 on processes involved in tumorigenesis, they hold potential as novel therapeutic targets and biomarkers.