Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0137

Brain Reward Circuits in Morphine Addiction  

Kim, Juhwan (Center for Neuroscience, Brain Science Institute)
Ham, Suji (Center for Neuroscience, Brain Science Institute)
Hong, Heeok (Department of Medical Science, Konkuk University School of Medicine)
Moon, Changjong (Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University)
Im, Heh-In (Center for Neuroscience, Brain Science Institute)
Abstract
Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.
Keywords
addiction; morphine; opiate; reward circuits; withdrawal symptom;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gao, J., Li Y., Zhu, N., Brimijoin, S., and Sui, N. (2013). Roles of dopaminergic innervation of nucleus accumbens shell and dorsolateral caudate-putamen in cue-induced morphine seeking after prolonged abstinence and the underlying D1- and D2-like receptor mechanisms in rats. J. Psychopharmacol. 27, 181-191.   DOI
2 Gasbarri, A., Sulli, A., and Packard, M.G. (1997). The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 1-22.   DOI
3 Georgescu, D., Zachariou, V., Barrot, M., Mieda, M., Willie, J.T., Eisch, A.J., Yanagisawa, M., Nestler E.J., and DiLeone R.J. (2003). Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106-3111.   DOI
4 Gholizadeh, S., Sun, N., De Jaeger, X., Bechard, M., Coolen, L., and Laviolette, S.R. (2013). Early versus late-phase consolidation of opiate reward memories requires distinct molecular and temporal mechanisms in the amygdala-prefrontal cortical pathway. PLoS One 8, e63612.   DOI
5 Gretton, S.K., Ross, J.R., Rutter, D., Sato, H., Droney, J.M., Welsh, K.I., Joel, S., and Riley, J. (2013). Plasma morphine and metabolite concentrations are associated with clinical effects of morphine in cancer patients. J. Pain Symptom Manage. 45, 670-680.   DOI
6 Guo, N., Garcia, M.M., and Harlan, R.E. (2008). A morphine-paired environment alters c-Fos expression in the forebrain of rats displaying conditioned place preference or aversion. Behav. Neurosci. 122, 1078-1086.   DOI
7 Haghparast, A., Esmaeili, M.H., Taslimi, Z., Kermani, M., Yazdi-Ravandi, S., and Alizadeh, A.M. (2013). Intrahippocampal administration of D2 but not D1 dopamine receptor antagonist suppresses the expression of conditioned place preference induced by morphine in the ventral tegmental area. Neurosci. Lett. 541, 138-143.   DOI
8 Han, H., Dong, Z., Jia, Y., Mao, R., Zhou, Q., Yang, Y., Wang, L., Xu, L., and Cao, J. (2015). Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci. Rep. 5, 9666.   DOI
9 Harris, G.C., Wimmer, M., and Aston-Jones, G. (2005). A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556-559.   DOI
10 Jalabert, M., Bourdy, R., Courtin, J., Veinante, P., Manzoni, O.J., Barrot, M., and Georges, F. (2011). Neuronal circuits underlying acute morphine action on dopamine neurons. Proc. Natl. Acad. Sci. USA 108, 16446-16450.   DOI
11 Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L., and Stuber, G.D. (2013). Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224-228.   DOI
12 Karimi, S., Azizi, P., Shamsizadeh, A., and Haghparast, A. (2013). Role of intra-accumbal cannabinoid CB1 receptors in the potentiation, acquisition and expression of morphine-induced conditioned place preference. Behav. Brain Res. 247, 125-131.   DOI
13 Kaufling, J., and Aston-Jones, G. (2015). Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J. Neurosci. 35, 10290-10303.   DOI
14 Keleta, Y.B., and Martinez, J.L. (2012). Brain Circuits of Methamphetamine Place Reinforcement Learning: The Role of the Hippocampus-VTA Loop. Brain Behav 2, 128-141.   DOI
15 Khaleghzadeh-Ahangar, H., and Haghparast, A. (2015). Intraaccumbal CB1 receptor blockade reduced extinction and reinstatement of morphine. Physiol. Behav. 149, 212-219.   DOI
16 Kudo, T., Konno, K., Uchigashima, M., Yanagawa, Y., Sora, I., Minami, M., and Watanabe, M. (2014). GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalinmediated inhibitory inputs from the bed nucleus of the stria terminalis. Eur. J. Neurosci. 39, 1796-1809.   DOI
17 Koo, J.W., Mazei-Robison, M.S., Chaudhury, D., Juarez, B., LaPlant, Q., Ferguson, D., Feng, J., Sun H., Scobie, K.N., Damez-Werno, D., et al. (2012). BDNF is a negative modulator of morphine action. Science 338, 124-128.   DOI
18 Koob, G.F., and Volkow, N.D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology 35, 217-238.   DOI
19 Kudo, T., Uchigashima, M., Miyazaki, T., Konno, K., Yamasaki, M., Yanagawa, Y., Minami, M., and Watanabe, M. (2012). Three types of neurochemical projection from the bed nucleus of the stria terminalis to the ventral tegmental area in adult mice. J. Neurosci. 32, 18035-18046.   DOI
20 Kufahl, P.R., Li, Z., Risinger, R.C., Rainey, C.J., Wu, G., Bloom, A.S., and Li, S.J. (2005). Neural responses to acute cocaine administration in the human brain detected by fMRI. Neuroimage 28, 904-914.   DOI
21 Kumar, K., Kelly, M., and Pirlot, T. (2001). Continuous intrathecal morphine treatment for chronic pain of nonmalignant etiology: long-term benefits and efficacy. Surg. Neurol. 55, 79-86; discussion 86-78.   DOI
22 Leah, P.M., Heath, E.M., Balleine, B.W., and Christie, M.J. (2015). Chronic morphine reduces surface expression of delta-opioid receptors in subregions of rostral striatum. Neurochem. Res. 41, 500-509.
23 Lecca, D., Valentini, V., Cacciapaglia, F., Acquas, E., and Di Chiara, G. (2007). Reciprocal effects of response contingent and noncontingent intravenous heroin on in vivo nucleus accumbens shell versus core dopamine in the rat: a repeated sampling microdialysis study. Psychopharmacology (Berl.) 194, 103-116.   DOI
24 Li, C., Pleil, K.E., Stamatakis, A.M., Busan, S., Vong, L., Lowell, B.B., Stuber, G.D., and Kash, T.L. (2012). Presynaptic inhibition of gamma-aminobutyric acid release in the bed nucleus of the stria terminalis by kappa opioid receptor signaling. Biol. Psychiatry 71, 725-732.   DOI
25 Lecca, S., Melis, M., Luchicchi, A., Muntoni, A.L., and Pistis, M. (2012). Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37, 1164-1176.   DOI
26 LeResche, L., Saunders, K., Dublin, S., Thielke, S., Merrill, J.O., Shortreed, S.M., Campbell, C., and Von Korff, M.R. (2015). Sex and age differences in global pain status among patients using opioids long term for chronic noncancer pain. J. Womens Health (Larchmt). 24, 629-635.   DOI
27 Li, T., Yan, C.X., Hou, Y., Cao, W., Chen, T., Zhu, B.F., and Li, S.B. (2008). Cue-elicited drug craving represses ERK activation in mice prefrontal association cortex. Neurosci. Lett. 448, 99-104.   DOI
28 Liang, J., Ma, S.S., Li, Y.J., Ping, X.J., Hu, L., and Cui, C.L. (2012). Dynamic changes of tyrosine hydroxylase and dopamine concentrations in the ventral tegmental area-nucleus accumbens projection during the expression of morphine-induced conditioned place preference in rats. Neurochem. Res. 37, 1482-1489.   DOI
29 Lintas, A., Chi, N., Lauzon, N.M., Bishop, S.F., Gholizadeh, S., Sun, N., Tan, H., and Laviolette, S.R. (2011). Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit. J. Neurosci. 31, 11172-11183.   DOI
30 Lintas, A., Chi, N., Lauzon, N.M., Bishop, S.F., Sun, N., Tan, H., and Laviolette, S.R. (2012). Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission. Eur. J. Neurosci. 35, 279-290.   DOI
31 Ma, D.Y., Xu, M.Y., Yang, H.C., and Yang, L.Z. (2008). Effect of inhibition of the central nucleus of the amygdala and drug experience on the regions underlying footshock-induced reinstatement of morphine seeking. J. Int. Med. Res. 36, 992-1000.   DOI
32 Lisman, J.E., and Grace, A.A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703-713.   DOI
33 Lu, G., Zhou, Q.X., Kang, S., Li, Q.L., Zhao, L.C., Chen, J.D., Sun, J.F., Cao, J., Wang, Y.J., Chen, J., et al. (2010). Chronic morphine treatment impaired hippocampal long-term potentiation and spatial memory via accumulation of extracellular adenosine acting on adenosine A1 receptors. J. Neurosci. 30, 5058-5070.   DOI
34 Luo, A.H., Tahsili-Fahadan, P., Wise, R.A., Lupica, C.R., and Aston-Jones, G. (2011). Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 333, 353-357.   DOI
35 Mamoon, A.M., Barnes, A.M., Ho, I.K., and Hoskins, B. (1995). Comparative rewarding properties of morphine and butorphanol. Brain Res. Bull. 38, 507-511.   DOI
36 Manchikanti, L., Abdi, S., Atluri, S., Balog, C.C., Benyamin, R.M., Boswell, M.V., Brown, K.R., Bruel, B.M., Bryce, D.A., Burks, P.A., et al. (2012). American Society of Interventional Pain Physicians (ASIPP). guidelines for responsible opioid prescribing in chronic non-cancer pain: Part I--evidence assessment. Pain Physician 15, S1-65.
37 Melis, M., Gessa, G.L., and Diana, M. (2000). Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Prog. Neuropsychopharmacol. Biol. Psychiatry 24, 993-1006.   DOI
38 Mercadante, S. (1999). Problems of long-term spinal opioid treatment in advanced cancer patients. Pain 79, 1-13.   DOI
39 Milad, M.R., and Quirk, G.J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70-74.   DOI
40 Merkle, F.T., Maroof, A., Wataya, T., Sasai, Y., Studer, L., Eggan, K., and Schier, A.F. (2015). Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 142, 633-643.   DOI
41 Miller, A.D., Forster, G.L., Yeomans, J.S., and Blaha, C.D. (2005). Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience 136, 531-538.   DOI
42 Muller, D.L., and Unterwald, E.M. (2005). D1 dopamine receptors modulate deltaFosB induction in rat striatum after intermittent morphine administration. J. Pharmacol. Exp. Ther. 314, 148-154.   DOI
43 Narita, M., Matsushima, Y., Niikura, K., Narita, M., Takagi, S., Nakahara, K., Kurahashi, K., Abe, M., Saeki, M., Asato, M., et al. (2010). Implication of dopaminergic projection from the ventral tegmental area to the anterior cingulate cortex in mu-opioidinduced place preference. Addict. Biol. 15, 434-447.   DOI
44 Nestler, E.J. (2004). Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol. Sci. 25, 210-218.   DOI
45 Neugebauer, N.M., Einstein, E.B., Lopez, M.B., McClure-Begley, T.D., Mineur, Y.S., and Picciotto, M.R. (2013). Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacol. Biochem. Behav. 109, 77-83.   DOI
46 Nguyen, T.L., Kwon, S.H., Hong, S.I., Ma, S.X., Jung, Y.H., Hwang, J.Y., Kim, H.C., Lee, S.Y., and Jang, C.G. (2014). Transient receptor potential vanilloid type 1 channel may modulate opioid reward. Neuropsychopharmacology 39, 2414-2422.   DOI
47 Pickel, V.M., Chan, J., Kash, T.L., Rodriguez, J.J., and MacKie, K. (2004). Compartment-specific localization of cannabinoid 1 (CB1). and mu-opioid receptors in rat nucleus accumbens. Neuroscience 127, 101-112.   DOI
48 Nunez, C., Martin, F., Foldes, A., Luisa Laorden, M., Kovacs, K.J., and Victoria Milanes, M. (2010). Induction of FosB/DeltaFosB in the brain stress system-related structures during morphine dependence and withdrawal. J. Neurochem. 114, 475-487.   DOI
49 Olmstead, M.C., and Franklin, K.B. (1997). The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behav. Neurosci. 111, 1324-1334.   DOI
50 Peters, J. and De Vries, T.J. (2012). Glutamate mechanisms underlying opiate memories. Cold Spring Harb. Perspect. Med. 2, a012088.
51 Polissidis, A., Galanopoulos, A., Naxakis, G., Papahatjis, D., Papadopoulou-Daifoti, Z., and Antoniou, K. (2013). The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int. J. Neuropsychopharmacol. 16, 393-403.   DOI
52 Pontieri, F.E., Tanda, G., and Di Chiara, G. (1995). Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the "shell" as compared with the "core" of the rat nucleus accumbens. Proc. Natl. Acad. Sci. USA 92, 12304-12308.   DOI
53 Pu, L., Bao, G.B., Xu, N.J., Ma, L., and Pei, G. (2002). Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J. Neurosci. 22, 1914-1921.   DOI
54 Quirk, G.J., and Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56-72.   DOI
55 Rezayof, A., Zarrindast, M.R., Sahraei, H., and Haeri-Rohani, A.H. (2002). Involvement of dopamine D2 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Pharmacol. Biochem. Behav. 74, 187-197.   DOI
56 Rashidy-Pour, A., Pahlevani, P., Vaziri, A., Shaigani, P., Zarepour, L., Vafaei, A.A. and Haghparast, A. (2013). Involvement of CB1 receptors in the ventral tegmental area in the potentiation of morphine rewarding properties in acquisition but not expression in the conditioned place preference model. Behav. Brain Res. 247, 259-267.   DOI
57 Razavi, Y., Karimi, S., Bani-Ardalan, M., and Haghparast, A. (2014). Chemical stimulation of the lateral hypothalamus potentiated the sensitization to morphine in rats: involvement of orexin-1 receptor in the ventral tegmental area. EXCLI J. 13, 1120-1130.
58 Rei, D., Mason, X., Seo, J., Graff, J., Rudenko, A., Wang, J., Rueda, R., Siegert, S., Cho, S., Canter, R.G., et al. (2015). Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proc. Natl. Acad. Sci. USA 112, 7291-7296.   DOI
59 Rezayof, A., Nazari-Serenjeh, F., Zarrindast, M.R., Sepehri, H., and Delphi, L. (2007). Morphine-induced place preference: involvement of cholinergic receptors of the ventral tegmental area. Eur. J. Pharmacol. 562, 92-102.   DOI
60 Rezayof, A., Darbandi, N., and Zarrindast, M.R. (2008). Nicotinic acetylcholine receptors of the ventral tegmental area are involved in mediating morphine-state-dependent learning. Neurobiol. Learn. Mem. 90, 255-260.   DOI
61 Rezayof, A., Hosseini, S.S., and Zarrindast, M.R. (2009). Effects of morphine on rat behaviour in the elevated plus maze: the role of central amygdala dopamine receptors. Behav. Brain Res. 202, 171-178.   DOI
62 Sakurai, T., Amemiya A., Ishii M., Matsuzaki I., Chemelli R.M., Tanaka H., Williams S.C., Richardson J.A., Kozlowski G.P., Wilson S., et al. (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573-585.   DOI
63 Richardson, K.A., and Aston-Jones, G. (2012). Lateral hypothalamic orexin/hypocretin neurons that project to ventral tegmental area are differentially activated with morphine preference. J. Neurosci. 32, 3809-3817.   DOI
64 Rosen, L.G., Zunder, J., Renard, J., Fu, J., Rushlow, W., and Laviolette, S.R. (2015). Opiate exposure state controls a D2-CaMKIIalpha-dependent memory switch in the amygdalaprefrontal cortical circuit. Neuropsychopharmacology 41, 847-857.
65 Russo, S.J., Bolanos C.A., Theobald D.E., DeCarolis N.A., Renthal W., Kumar A., Winstanley C.A., Renthal N.E., Wiley M.D., Self D.W., et al. (2007). IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat. Neurosci. 10, 93-99.   DOI
66 Schott, B.H., Sellner, D.B., Lauer, C.J., Habib, R., Frey, J.U., Guderian, S., Heinze, H.J., and Duzel, E. (2004). Activation of midbrain structures by associative novelty and the formation of explicit memory in humans. Learn. Mem. 11, 383-387.   DOI
67 Schug, S.A., Zech, D., Grond, S., Jung, H., Meuser, T., and Stobbe, B. (1992). A long-term survey of morphine in cancer pain patients. J. Pain Symptom Manage. 7, 259-266.   DOI
68 Schultheiss, R., Schramm, J., and Neidhardt, J. (1992). Dose changes in long- and medium-term intrathecal morphine therapy of cancer pain. Neurosurgery 31, 664-669; discussion 669-670.   DOI
69 Schultz, W. (2002). Getting formal with dopamine and reward. Neuron 36, 241-263.   DOI
70 Sesack, S.R., and Carr, D.B. (2002). Physiol. Behav. 77, 513-517.
71 Szabo, B., Siemes, S., and Wallmichrath, I. (2002). Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci. 15, 2057-2061.   DOI
72 Stamatakis, A.M., Sparta, D.R., Jennings, J.H., McElligott, Z.A., Decot, H., and Stuber, G.D. (2014). Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors. Neuropharmacology 76 (Pt B), 320-328.   DOI
73 Steidl, S., and Yeomans, J.S. (2009). M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J. Pharmacol. Exp. Ther. 328, 263-275.   DOI
74 Suto, N., Wise, R.A., and Vezina, P. (2011). Dorsal as well as ventral striatal lesions affect levels of intravenous cocaine and morphine self-administration in rats. Neurosci. Lett. 493, 29-32.   DOI
75 Tan, K.R., Yvon, C., Turiault, M., Mirzabekov, J.J., Doehner, J., Labouebe, G., Deisseroth, K., Tye, K.M., and Luscher, C. (2012). GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173-1183.   DOI
76 Tan, H., Rosen, L.G., Ng, G.A., Rushlow, W.J., and Laviolette, S.R. (2014). NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling. Psychopharmacology (Berl.). 231, 4669-4679.   DOI
77 Tanda, G., Pontieri, F.E., and Di Chiara, G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276, 2048-2050.   DOI
78 Taylor, A.M., Castonguay, A., Ghogha, A., Vayssiere, P., Pradhan, A.A., Xue, L., Mehrabani, S., Wu, J., Levitt, P., Olmstead, M.C., et al. (2015). Neuroimmune regulation of GABAergic neurons within the ventral tegmental area during withdrawal from chronic Morphine. Neuropsychopharmacology 41, 949-959.
79 van Zessen, R., Phillips, J.L., Budygin, E.A., and Stuber, G.D. (2012). Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184-1194.   DOI
80 Trujillo, K.A., and Akil, H. (1991). Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251, 85-87.   DOI
81 Ventura, R., Alcaro, A., and Puglisi-Allegra, S. (2005). Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb. Cortex 15, 1877-1886.   DOI
82 Watanabe, T., Nakagawa, T., Yamamoto, R., Maeda, A., Minami, M., and Satoh, M. (2003). Involvement of noradrenergic system within the central nucleus of the amygdala in naloxoneprecipitated morphine withdrawal-induced conditioned place aversion in rats. Psychopharmacology (Berl.). 170, 80-88.   DOI
83 Yu, G., Yan, H., and Gong, Z.H. (2012). Differential effects of acute and repeated morphine treatment on kappa-opioid receptor mRNA levels in mesocorticolimbic system. Pharmacol. Rep. 64, 445-448.   DOI
84 Zarrindast, M.R., Rezayof, A., Sahraei, H., Haeri-Rohani, A., and Rassouli, Y. (2003). Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain Res. 965, 212-221.   DOI
85 Zarrindast, M.R., Nouri, M., and Ahmadi, S. (2007). Cannabinoid CB1 receptors of the dorsal hippocampus are important for induction of conditioned place preference (CPP). but do not change morphine CPP. Brain Res. 1163, 130-137.   DOI
86 Zarrindast, M.R., Eslahi, N., Rezayof, A., Rostami, P., and Zahmatkesh, M. (2013). Modulation of ventral tegmental area dopamine receptors inhibit nicotine-induced anxiogenic-like behavior in the central amygdala. Prog. Neuropsychopharmacol. Biol. Psychiatry 41, 11-17.   DOI
87 Baimel, C., and Borgland, S.L. (2015). Orexin signaling in the VTA gates morphine-induced synaptic plasticity. J. Neurosci. 35, 7295-7303.   DOI
88 Ahmad, T., Lauzon, N.M., de Jaeger, X., and Laviolette, S.R. (2013). Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus mu-opiate receptor dependent mechanisms. J. Neurosci. 33, 15642-15651.   DOI
89 Ambroggi, F., Ishikawa, A., Fields, H.L. , and Nicola, S.M. (2008). Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59, 648-661.   DOI
90 Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N.J., Habel, U., Schneider, F., and Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. (Berl.) 210, 343-352.   DOI
91 Beitner-Johnson, D., and Nestler, E.J. (1991). Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J. Neurochem. 57, 344-347.   DOI
92 Bishop, S.F., Lauzon, N.M., Bechard, M., Gholizadeh, S., and Laviolette, S.R. (2011). NMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates. Cereb. Cortex 21, 68-80.   DOI
93 Bissiere, S., Humeau, Y., and Luthi, A. (2003). Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat. Neurosci. 6, 587-592.   DOI
94 Bontempi, B., and Sharp, F.R. (1997). Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area. J. Neurosci. 17, 8596-8612.   DOI
95 Chartoff, E.H., Mague, S.D., Barhight, M.F., Smith, A.M., and Carlezon, W.A., Jr. (2006). Behavioral and molecular effects of dopamine D1 receptor stimulation during naloxone-precipitated morphine withdrawal. J. Neurosci. 26, 6450-6457.   DOI
96 Ziolkowska, B., Gieryk, A., Solecki, W., and Przewlocki, R. (2015). Temporal and anatomic patterns of immediate-early gene expression in the forebrain of C57BL/6 and DBA/2 mice after morphine administration. Neuroscience 284, 107-124.   DOI
97 Zhou, Y., Bendor, J., Hofmann, L., Randesi, M., Ho, A., and Kreek, M.J. (2006). Mu opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J. Endocrinol. 191, 137-145.   DOI
98 Bunzeck, N., Doeller, C.F., Dolan, R.J., and Duzel, E. (2012). Contextual interaction between novelty and reward processing within the mesolimbic system. Hum. Brain Mapp. 33, 1309-1324.   DOI
99 Cason, A.M., Smith, R.J., Tahsili-Fahadan, P., Moorman, D.E., Sartor, G.C., and Aston-Jones, G. (2010). Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol. Behav. 100, 419-428.   DOI
100 Cazala, P., Darracq, C., and Saint-Marc, M. (1987). Selfadministration of morphine into the lateral hypothalamus in the mouse. Brain Res. 416, 283-288.   DOI
101 Chase, H.W., Eickhoff, S.B., Laird, A.R., and Hogarth, L. (2011). The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol. Psychiatry 70, 785-793.   DOI
102 Chefer, V.I., and Shippenberg, T.S. (2009). Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology 34, 887-898.   DOI
103 Clark, J.D. (2002). Chronic pain prevalence and analgesic prescribing in a general medical population. J. Pain Symptom Manage. 23, 131-137.   DOI
104 Coque, L., Mukherjee, S., Cao, J.L., Spencer, S., Marvin, M., Falcon, E., Sidor, M.M., Birnbaum, S.G., Graham, A., Neve, R.L., et al. (2011). Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockDelta19 mouse model of mania. Neuropsychopharmacology 36, 1478-1488.   DOI
105 Daubner, S.C., Le, T., and Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 508, 1-12.   DOI
106 Cossu, G., Ledent, C., Fattore, L., Imperato, A., Bohme, G.A., Parmentier, M., and Fratta, W. (2001). Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav. Brain Res. 118, 61-65.   DOI
107 Dacher, M., and Nugent, F.S. (2011). Morphine-induced modulation of LTD at GABAergic synapses in the ventral tegmental area. Neuropharmacology 61, 1166-1171.   DOI
108 Darbandi, N., Rezayof, A., and Zarrindast, M.R. (2008). Modulation of morphine state-dependent learning by muscarinic cholinergic receptors of the ventral tegmental area. Physiol. Behav. 94, 604-610.   DOI
109 Dazzi, L., Talani, G., Biggio, F., Utzeri, C., Lallai, V., Licheri, V., Lutzu, S., Mostallino, M.C., Secci, P.P., Biggio, G., et al. (2014). Involvement of the cannabinoid CB1 receptor in modulation of dopamine output in the prefrontal cortex associated with food restriction in rats. PLoS One 9, e92224.   DOI
110 de Guglielmo, G., Melis, M., De Luca, M.A., Kallupi, M., Li, H.W., Niswender, K., Giordano, A., Senzacqua, M., Somaini, L., Cippitelli, A., et al. (2015). PPARgamma activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. Neuropsychopharmacology 40, 927-937.   DOI
111 De Jaeger, X., Bishop, S.F., Ahmad, T., Lyons, D., Ng, G.A., and Laviolette, S.R. (2013). The effects of AMPA receptor blockade in the prelimbic cortex on systemic and ventral tegmental area opiate reward sensitivity. Psychopharmacology (Berl.) 225, 687-695.   DOI
112 Devine, D.P., Leone, P., Pocock, D., and Wise, R.A. (1993). Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J. Pharmacol. Exp. Ther. 266, 1236-1246.
113 de Lecea, L., Kilduff, T.S., Peyron, C., Gao, X., Foye, P.E., Danielson, P.E., Fukuhara, C., Battenberg, E.L., Gautvik, V.T., Bartlett, F.S., 2nd, et al. (1998). The hypocretins: hypothalamusspecific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95, 322-327.   DOI
114 De Luca, M.A., Bimpisidis, Z., Bassareo, V., and Di Chiara, G. (2011). Influence of morphine sensitization on the responsiveness of mesolimbic and mesocortical dopamine transmission to appetitive and aversive gustatory stimuli. Psychopharmacology (Berl.). 216, 345-353.   DOI
115 De Rover, M., Lodder, J.C., Schoffelmeer, A.N., and Brussaard, A.B. (2005). Intermittent morphine treatment induces a longlasting increase in cholinergic modulation of GABAergic synapses in nucleus accumbens of adult rats. Synapse 55, 17-25.   DOI
116 Dong, H.W., Petrovich, G.D., Watts, A.G., and Swanson, L.W. (2001). Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J. Comp. Neurol. 436, 430-455.   DOI
117 Dumont, E.C., Rycroft, B.K., Maiz, J., and Williams, J.T. (2008). Morphine produces circuit-specific neuroplasticity in the bed nucleus of the stria terminalis. Neuroscience 153, 232-239.   DOI
118 Eisch, A.J., Barrot, M., Schad, C.A., Self, D.W., and Nestler, E.J. (2000). Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl. Acad. Sci. USA 97, 7579-7584.   DOI
119 Everitt, B.J. (2014). Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories--indications for novel treatments of addiction. Eur. J. Neurosci. 40, 2163-2182.   DOI
120 Esmaeili, M.H., Kermani, M., Parvishan, A., and Haghparast, A. (2012). Role of D1/D2 dopamine receptors in the CA1 region of the rat hippocampus in the rewarding effects of morphine administered into the ventral tegmental area. Behav. Brain Res. 231, 111-115.   DOI
121 Everitt, B.J., Parkinson, J.A., Olmstead, M.C., Arroyo, M., Robledo, P., and Robbins, T.W. (1999). Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann. N Y Acad. Sci. 877, 412-438.   DOI
122 Everitt, B.J., and Robbins, T.W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37, 1946-1954.   DOI
123 Fields, H.L., and Margolis, E.B. (2015). Understanding opioid reward. Trends Neurosci. 38, 217-225.   DOI
124 Finnegan, T.F., Chen, S.R., and Pan, H.L. (2006). Mu opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels. J. Neurophysiol. 95, 2032-2041.   DOI
125 Ford, C.P., Mark, G.P., and Williams, J.T. (2006). Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J. Neurosci. 26, 2788-2797.   DOI
126 Fuchs, R.A., Evans, K.A., Ledford, C.C., Parker, M.P., Case, J.M., Mehta, R.H., and See, R.E. (2005). The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30, 296-309.   DOI