Browse > Article
http://dx.doi.org/10.24304/kjcp.2018.28.4.273

Bile Acids and the Metabolic Disorders  

Roh, Ji Hye (College of Pharmacy, Pusan National University)
Yoon, Jeong-Hyun (College of Pharmacy, Pusan National University)
Publication Information
Korean Journal of Clinical Pharmacy / v.28, no.4, 2018 , pp. 273-278 More about this Journal
Abstract
Bile acids are major constituents of bile and known to help absorb dietary fat and fat-soluble vitamins in the gastrointestinal tract. In the past few decades, many studies have shown that bile acids not only play a role in fat digestion but also function as broad range of signal transduction hormones by binding to various receptors present in cell membranes or nuclei. Bile acid receptors are distributed in a wide range of organs and tissues in the human body. They perform multitudes of physiological functions with complex mechanisms. When bile acids bind to their receptors, they regulate fat and glucose metabolism in a tissue-specific way. In addition, bile acids are shown to inhibit inflammation and fibrosis in the liver. Considering the roles of bile acids as metabolic regulators, bile acids and their receptors can be very attractive targets in treating metabolic disorders. In the future, if roles of bile acids and their receptors are further clarified, they will be the novel target of drugs in the treatment of various metabolic diseases.
Keywords
Bile acid; metabolic disorder; receptor; metabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Claudel T, Staels B, Kuipers F. The farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005;25(10):2020-30.   DOI
2 Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015;385(9972):956-65.   DOI
3 U.S. National Library of Medicine. Study of the effects of obeticholic acid on farnesoid X receptor expression in jejunum and on gut microbiota in morbidly obese patients and healthy volunteers. Available from https://clinicaltrialsgov/ct2/show/NCT02532335?cond=obeticholic+acid&rank=5. Accessed Aug 29, 2018.
4 Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem 2003;278(1):104-10.   DOI
5 Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated mile acid sensing controls glucose homeostasis. Cell Metab 2009;10(3):167-77.   DOI
6 Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003;278(11):9435-40.   DOI
7 Massotte, Dominique, et al. Structure-function relationships in G protein-coupled receptors. In; Devi, Lakshmi A, eds. The G protein-coupled receptors handbook, 16, New York: Humana Press, 2005:3-4
8 Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995;81(5):687-93.   DOI
9 Chiang JY, Kimmel R, Weinberger C, et al. Farnesoid X receptor responds to bile acids and represses cholesterol $7{\alpha}$-hydroxylase gene (CYP7A1) transcription. J Biol Chem 2000;275(15):10918-24.   DOI
10 Kim I, Ahn S-H, Inagaki T, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 2007;48(12):2664-72.   DOI
11 Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol 2013;368(1-2):17-29.   DOI
12 Pineda Torra I, Claudel T, Duval C, et al. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol 2003;17(2):259-72.   DOI
13 Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid 'mechanisms of action and clinical use in hepatobiliary disorders'. J Hepatol 2001;35(1):134-46.   DOI
14 Aguiar Vallim TQ, Tarling EJ, et al. Pleiotropic roles of bile acids in metabolism. Cell Metab 2013;17(5):657-69.   DOI
15 Han CY. Update on FXR biology: promising therapeutic target? Int J Mol Sci 2018;19(7):pii:2069.
16 Chiang JY. Bile acids: regulation of synthesis. J Lipid Res 2009;50(10):1955-66.   DOI
17 Monte MJ, Marin JJ, Antelo A, et al. Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 2009;15(7): 804-16.   DOI
18 Afroze S, Meng F, Jensen K, et al. The physiological roles of secretin and its receptor. Ann Transl Med 2013;1(3):29.
19 Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014;66(4):948-83.   DOI
20 Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008;7(8):678-93.   DOI
21 Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor. Science 2002;296(5571):1313-6.   DOI
22 Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006;368(9548):1696-705.   DOI
23 Astrup A, Rossner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 2009;374(9701):1606-16.   DOI
24 Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009;89(1):147-91.   DOI
25 Molinaro A, Wahlstrom A, Marschall HU. Role of bile acids in metabolic control. Trends Endocrinol Metab 2018;29(1):31-41.   DOI
26 Kars M, Yang L, Gregor MF, et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 2010;59(8):1899-905.   DOI
27 Esteller A. Physiology of bile secretion. World J Gastroenterol 2008;14(37):5641-9.   DOI
28 Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. Embo J 2006;25(7):1419-25.   DOI
29 Zhu C, Fuchs C, Halilbasic E, et al. Bile acids in regulation of inflammation and immunity: friend or foe? Clin Exp Rheumatol 2016;34(4 Suppl 98):25-31.
30 Handelsman Y. Role of bile acid sequestrants in the treatment of type 2 diabetes. Diabetes Care 2011;34(Suppl 2):S244-50.   DOI
31 Cyphert HA, Ge X, Kohan AB, et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem 2012;287(30):25123-38.   DOI
32 Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005;115(6):1627-35.   DOI
33 Chavez-Talavera O, Tailleux A, Lefebvre P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Am J Gastroenterol 2017; 152(7):1679-94.e3.
34 Claudel T, Zollner G, Wagner M, et al. Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta 2011;1812(8):867-78.   DOI
35 Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375(7):631-43.   DOI
36 Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 2016;12(1):15-28.   DOI
37 World health organization international obesity task force, The asianpacific perspective: redefining obesity and its treatment. Geneva: WHO Western Pacific Region, 2000;17-18.
38 Park JH. Measuring BMI cutoff points of korean adults using morbidity of BMI-related diseases. Korean J Obesity. 2011;20(1):36-43.   DOI
39 Hamilton MT, Hamilton DG, Zderic TW. The role of low energy expenditure and sitting on obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007;56(11):2655-67.   DOI
40 Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006;439(7075):484-9.   DOI