• Title/Summary/Keyword: physics concept

Search Result 222, Processing Time 0.019 seconds

Assessing the Feasibility of an Accident Management Strategy Using Dynamic Reliability Methods

  • Moosung Jae;Kim, Jae-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • This paper presents a new dynamic approach for assessing feasibility associated with the implementation of accident management strategies by the operators. This approach includes the combined use of both the concept of reliability physics and a dynamic event tree generation scheme. The reliability physics is based on the concept of a comparison between two competing variables, i.e., the requirement and the achievement parameter, while the dynamic event tree generation scheme on the continuous generation of the possible event sequences at every branch point up to the desired solution. This approach is applied to a cavity flooding strategy in a reference plant, which is to supply water into the reactor cavity using emergency fire systems in the station blackout sequence. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the requirement parameter. It has been demonstrated that this combined methodology may contribute to assessing the success likelihood of the operator actions required during accidents and therefore to developing the accident management procedures.

  • PDF

DESIGN CONCEPT FOR SINGLE CHIP MOSAIC CCD CONTROLLER

  • HAN WONYONG;JIN Ho;WALKER DAVID D.;CLAYTON MARTIN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.389-390
    • /
    • 1996
  • The CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However, the areas of available sensors are too small for large imaging format. One possibility to obtain large detection area is to assemble mosaics of CCD, and drive them simultaneously. Parallel driving of many CCDs together rules out the possibility of individual tuning; however, such optimisation is very important, when the ultimate low light level performance is required, particularly for new, or mixed devices. In this work, a new concept is explored for an entirely novel approach, where the drive waveforms are multiplexed and interleaved. This simultaneously reduces the number of leadout connections and permits individual optimisation efficiently. The digital controller can be designed within a single EPLD (Erasable Programmable Logic Device) chip produced by a CAD software package, where most of the digital controller circuits are integrated. This method can minimise the component. count., and improve the system efficiency greatly, based on earlier works by Han et a1. (1996, 1994). The system software has an open architecture to permit convenient modification by the user, to fit their specific purposes. Some variable system control parameters can be selected by a user with a wider range of choice. The digital controller design concept allows great flexibility of system parameters by the software, specifically for the compatibility to deal with any number of mixed CCDs, and in any format, within the practical limit.

  • PDF

Conceptual design and analysis of remote steering system for CFETR ECRH system

  • Chao Zhang;Xiaojie Wang;Dajun Wu;Yunying Tang;Hanlin Wang;Dingzhen Li;Fukun Liu;Muquan Wu;Peiguang Yan;Xiang Gao;Jiangang Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.451-462
    • /
    • 2024
  • In order to optimize the operational safety and reliability of the upper launcher for the CFETR ECRH system, a design of the launcher based on the remote steering concept is currently being carried out for comparison with the front steering equivalent. This paper presents the remote steering system's conceptual design and simulation analysis. A Square Corrugated Waveguide (SCW) of 65 × 65 mm has been designed with an optimized length of 9.35 m. By changing the relative length of the waveguide, the transmission efficiency of the SCW is optimized within the range of steering angles ±12°. Different error factors are investigated in detail, and corresponding acceptable error ranges are provided. Considering these error factors and ignoring ohmic losses and thermal effects, the relative transmission efficiency of the SCW is estimated to be >98 % within the steering angle range. A matching steering unit for the SCW is designed, which consists of an ellipsoidal focusing mirror and a steerable flat mirror. The detailed design of the steerable mirror motion trajectory is presented. Also, the influence of the possible beam incident errors caused by the steering unit on the transmission efficiency is analyzed in detail.

Quasi-optical design and analysis of a remote steering launcher for CFETR ECRH system

  • Zhang Chao;Xiaojie Wang;Dajun Wu;Yunying Tang;Hanlin Wang;Dingzhen Li;Fukun Liu;Muquan Wu;Peiguang Yan;Xiang Gao;Jiangang Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1619-1626
    • /
    • 2024
  • In order to optimize the operational safety and reliability of the upper launcher for the CFETR ECRH system, a design of the launcher for NTM control based on the remote steering concept is currently being carried out for comparison with the front steering equivalent. This paper presents the layout design and analysis of the quasi-optical system in the remote steering launcher. A 3D visual quasi-optical design tool has been developed for the quasi-optical system, which can parameterize modeling, perform general astigmatic beam calculation and show the accurate beam propagation path in the upper port. Three identical sets of quasi-optical modules are arranged in the launcher, and each one consists of two fixed double-curvature focusing mirrors, which focus and reflect the steering beams (- 12°-12°) from two square corrugated waveguides. The beam characteristics at the resonance layer are described, and the average beam radius is < 100 mm. The peak head loads on the surfaces of the two fixed mirrors are 1.63 MW/m2 and 1.52 MW/m2. The position and size of the beam channel in the blanket are obtained, and the opening apertures on the launcher-facing and plasma-facing sides of the blanket module are 0.54 m2 and 0.4 m2, respectively.

SPACE PHYSICS PACKAGE ON KAISTSAT-4 (과학위성 1호의 우주 플라즈마 관측 시스템)

  • HWANG JUNG-A;LEE JAE-JIN;LEE DAE-HEE;LEE JIN-GUN;KIM HEE-JUN;PARK JAE-HEUNG;MIN KYOUNG WOOK;SHIN YOUNG-HOON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.45-52
    • /
    • 2000
  • Four plasma instruments are currently under development for KAISTSAT-4 (K-4) which is scheduled for launch in 2002. They are the Solid-State Telescope, Electro-Static Analyzer, Langmuir Probe, and the Scientific Magnetometer, that will respectively allow in-situ detection of high energy and low energy components of auroral particles, ionospheric thermal electrons, and magnetic field disturbances. These instruments, together with the Far-ultraviolet IMaging Spectrograph, will provide micro-scale physics of Earth's polar ionosphere with detailed spectral information that has not been previously achieved with other space missions. In this paper, we review the concept of the four space plasma instruments as well as the anticipated results from the instruments.

  • PDF

Exploration of Physics Teachers' Perceptions of Idealization (이상화(idealization)에 관한 물리교사들의 인식)

  • Yoon, Ji-Hyun;Mun, Kong-Ju;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.5
    • /
    • pp.801-814
    • /
    • 2011
  • The purposes of this study were to understand what is physics teachers' perceptions of idealization and to explore their teaching experiences about idealization in their physics classes. In order to achieve these research purpose, we conducted in-depth interviews with ten Korean physics teachers. The interview data was transcribed and analyzed interpretively. The results are as follows: (1) Physics teachers are not familiar with the term of 'idealization' but they understand the meaning of idealization and ideal condition. (2) Physics teachers understand the necessity of explicit mentions of idealization and ideal conditions in physics classes. (3) Physic teachers adapt conceptions of idealization and ideal condition into their lectures, experimental classes and evaluation strategies. Thus, the results of this study can provide theocratical understanding of idealization. It will help develop teacher education programs and physics teaching strategies. This research also suggested follow-up research questions about idealization in the physics education field.

Professional Level of Non-physics Major Middle-school Science Teachers in 'Force and Motion' Content Knowledge (물리 전공이 아닌 중학교 과학교사들의 '힘과 운동' 내용 지식 영역의 전문성)

  • Park, Kyeong-Yeong;Kim, Young-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.910-922
    • /
    • 2009
  • The purpose of the study was to investigate the professional level of the Korean non-physics major middle-school science teachers in 'force and motion' content knowledge. For the study, nine science teachers who majored in chemistry, biology, or earth science were sampled from middle-schools in a big city in Korea. The physics concept test-tool (subjective type), which the authors developed, were administered, and then followed by in-depth interviews. The research findings are as follows: Firstly, non-physics major science teachers' correct answer rate in physics knowledge test of secondary school level was not so high that they may have difficulty in teaching correct concepts in physics to middle-school students. Secondly, some teachers show that they can not apply some physics concepts from one to another situation. That means that they may have difficulty in teaching physics conceptual application in various situations to students.

The Effect of 4M Learning Cycle Teaching Model based on the Integrated Mental Model Theory: Focusing on Learning Circular Motion of High School Students (통합적 정신모형 이론에 기반한 4M 순환학습 수업모형의 효과: 고등학생의 원운동 관련 기초 개념과 정신모형의 발달 측면에서)

  • Park, Ji-Yeon;Lee, Gyoung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.4
    • /
    • pp.302-315
    • /
    • 2008
  • Circular motion has been one of the most difficult concepts for students to understand. To facilitate for students to form scientific mental models about circular motion, this study developed 4M learning cycle teaching model based on the integrated mental model theory and strategies. For this study, fifty-three eleventh graders at a technical high school in Inchon were taught for 3 class hours. We conducted tests of basic physics concept and mental model of circular motion before, after, and two months after instruction. In results, we found that there were statistically significant improvement in the test of basic physics concept and mental model related with circular motion after instruction. Especially, this teaching model affected learning effectiveness of Correctness and Coherence of mental model.

Olefin/Paraffin Separation though Facilitated Transport Membranes in Solid State

  • Hong, Seong-Uk;Won, Jong-Ok;Hong, Jae-Min;Park, Hyun-Chae;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.15-18
    • /
    • 1999
  • A simple mathematical model for facilitated mass transport through a fixed site carrier membrane was derived by assuming an instantaneous, microscopic concentration (activity) fluctuation. The current model demonstrates that the facilitation factor depends on the extent of concentration fluctuation, the time scale ratios of diffusion to chemical reaction and the ratio of the carrier concentration to the solute solubility in matrix. The model was examined against the experimental data on oxygen transport in membranes containing metallo-porphyrin carriers, and the agreement was exceptional (within 10% error). The basic concept of this approach was applied to separate olefin from olefin/paraffin mixtures. A proprietaty carrier, developed here, resulted that the selectivity of propylene over propane was more than 120 and the propylene permeance exceed 40 gpu.

  • PDF