DOI QR코드

DOI QR Code

Conceptual design and analysis of remote steering system for CFETR ECRH system

  • Chao Zhang (College of Physics and Optoelectronic Engineering, Shenzhen University) ;
  • Xiaojie Wang (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Dajun Wu (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Yunying Tang (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Hanlin Wang (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Dingzhen Li (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Fukun Liu (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Muquan Wu (College of Physics and Optoelectronic Engineering, Shenzhen University) ;
  • Peiguang Yan (College of Physics and Optoelectronic Engineering, Shenzhen University) ;
  • Xiang Gao (College of Physics and Optoelectronic Engineering, Shenzhen University) ;
  • Jiangang Li (College of Physics and Optoelectronic Engineering, Shenzhen University)
  • Received : 2023.05.23
  • Accepted : 2023.10.16
  • Published : 2024.02.25

Abstract

In order to optimize the operational safety and reliability of the upper launcher for the CFETR ECRH system, a design of the launcher based on the remote steering concept is currently being carried out for comparison with the front steering equivalent. This paper presents the remote steering system's conceptual design and simulation analysis. A Square Corrugated Waveguide (SCW) of 65 × 65 mm has been designed with an optimized length of 9.35 m. By changing the relative length of the waveguide, the transmission efficiency of the SCW is optimized within the range of steering angles ±12°. Different error factors are investigated in detail, and corresponding acceptable error ranges are provided. Considering these error factors and ignoring ohmic losses and thermal effects, the relative transmission efficiency of the SCW is estimated to be >98 % within the steering angle range. A matching steering unit for the SCW is designed, which consists of an ellipsoidal focusing mirror and a steerable flat mirror. The detailed design of the steerable mirror motion trajectory is presented. Also, the influence of the possible beam incident errors caused by the steering unit on the transmission efficiency is analyzed in detail.

Keywords

Acknowledgement

This work has been supported by the Comprehensive Research Facility for Fusion Technology Program of China under Contract No. 2018-000052-73-01-001228, and the National Key R&D Program of China under Grant Nos. 2022YFE03070000, 2022YFE03070004.

References

  1. Y. Wan, J. Li, Y. Liu, et al., Overview of the present progress and activities on the CFETR[J], Nucl. Fusion 57 (10) (2017), 102009.
  2. G. Zhuang, G.Q. Li, J. Li, et al., Progress of the CFETR design[J], Nucl. Fusion 59 (11) (2019), 112010.
  3. Y. Tang, X. Wang, L. Zhang, et al., Design status of the ECRH system for CFETR[J], Fusion Eng. Des. 182 (2022), 113225.
  4. C. Zhang, F. Liu, X. Wang, et al., Quasi-optical design of EC H&CD launcher for CFETR[J], Fusion Eng. Des. 166 (2021), 112295.
  5. M.F. Graswinckel, W.A. Bongers, M.R. De Baar, et al., Advanced launcher design options for electron cyclotron current drive on ITER based on remote steering[J], Nucl. Fusion 48 (5) (2008), 054015.
  6. W.A. Bongers, M.F. Graswinckel, A.P.H. Goede, et al., A remotely steered millimetre wave launcher for electron cyclotron heating and current drive on, ITER [J]. Fusion engineering and design 85 (1) (2010) 69-86.
  7. G.G. Denisov, S.V. Kuzikov, N. Kobayashi, RF analysis of ITER remote steering antenna for electron-cyclotron plasma heating[J], Int. J. Infrared Millimet. Waves 22 (2001) 1735-1760.
  8. A.V. Chirkov, G.G. Denisov, W. Kasparek, et al., Simulation and experimental study of a remote steering system for ECRH/ECCD antenna beams[J], Fusion Eng. Des. 53 (1-4) (2001) 465-473.
  9. K. Takahashi, C.P. Moeller, K. Sakamoto, et al., High power experiments of remote steering launcher for electron cyclotron heating and current drive, Fusion Eng. Des. 65 (4) (2003) 589-598.
  10. W. Kasparek, G. Gantenbein, B. Plaum, et al., Performance of a remote steering antenna for ECRH/ECCD applications in ITER using a four-wall corrugated square waveguide[J], Nucl. Fusion 43 (11) (2003) 1505.
  11. M.A. Henderson, C.P. Moeller, Possible improvements to a remote steering launcher for localized electron cyclotron current drive[J], Fusion Sci. Technol. 53 (1) (2008) 220-236.
  12. L.A. Rivlin, AT S, Transmission of images through optical waveguides[J], Laser Focus 17 (2) (1981) 82-84.
  13. C.P. Moeller, A method of remotely steering a microwave beam launcher from a highly overmoded corrugated waveguide[C], in: Proceedings of the 23rd International Conference on Infrared and Millimeter Waves, 1998, p. 116.
  14. R.B. Dybdal, L. Peters, W.H. Peake, IEEE trans. Microwave theory tech[J], IEEE Trans. Microw. Theor. Tech. 19 (1971) 2-9.
  15. K. Ohkubo, Hybrid modes in a square corrugated waveguide[J], Int. J. Infrared Millimet. Waves 22 (2001) 1709-1727.
  16. Y. Tang, X. Wang, F. Liu, et al., Conceptual design of CFETR electron cyclotron wave system[J], Fusion Eng. Des. 94 (2015) 48-53.
  17. K. Ohkubo, S. Kubo, T. Shimozuma, et al., Extension of steering angle in a square corrugated waveguide antenna[J], Fusion Eng. Des. 65 (4) (2003) 657-672.
  18. Paul F. Goldsmith, Quasi-optical Systems: Gaussian Beam Quasi-Optical Propagation and Applications, IEEE Press, 1998.
  19. L. Rebuffi, J.P. Chenn, Radiation patterns of the HE11 mode and Gaussian approximations, Int. J. Infrared Millimeter Waves[J] 10 (3) (1988) 291-311.
  20. N.J. McEwan, P.F. Goldsmith, Design of elliptical and offset reflector antennas using Gaussian beam theory, 6th Int. Con. Antennas Propagation 301 (1989) 35-39.
  21. Altair Feko, Altair engineering, Inc [online], https://altair.com/feko.
  22. A.G.A. Verhoeven, W.A. Bongers, A. Bruschi, et al., Design of the mm-wave system of the ITER ECRH upper launcher[J], Fusion Eng. Des. 74 (1-4) (2005) 431-435.
  23. B. Plaum, C. Lechte, W. Kasparek, et al., Design of a remote steering antenna for ECRH heating in the stellarator Wendelstein 7-X[J], Fusion Eng. Des. 96 (2015) 568-572.