• Title/Summary/Keyword: physico-mechanical properties

Search Result 65, Processing Time 0.03 seconds

Synthesis of Polyimide Crosslinked Silica-based Aerogel with Enhanced Mechanical Properties and Its Physico-chemical Properties (폴리이미드 가교로 기계적 강도가 향상된 실리카 기반 에어로겔의 합성 및 물리화학적 특성 분석)

  • Kim, Jiseung;Choi, Haryeong;Kim, Taehee;Lee, Wonjun;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2022
  • Silica aerogel is a porous material with a very low density and high specific surface area. Still, its application is limited due to its weak mechanical properties due to structural features. To solve this problem, a method of complexing it with various polymers has been proposed. We synthesized polyimide cross-linked silica aerogel by the sol-gel process to obtain high mechanical properties. Tetraethyl orthosilicate (TEOS) was used as a precursor to make silica aerogel, and 3- aminopropyltriethoxysilane (APTES) was used as a coupling agent for cross-linking polyimide. Polyimide was synthesized using pyromellitic dianhydride and 3,5-diaminobenzoic acid, and mechanical properties were improved by crosslinking polyimide with 10 repeating units in the polyimide chain using the reaction formula ${\frac{n_1}{n_2}}={\frac{n}{n+1}}$ To realize silica aerogel, polyimide having various weight ratios was added before gelation, resulting in a 19-fold or greater increase in maximum compressive strength compared to pure silica aerogel. From this study, an enhancement of silica aerogel could be enhanced through polymer cross-linking bonds.

Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran

  • Azarafza, Mohammad;Ghazifard, Akbar;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.393-405
    • /
    • 2019
  • This paper evaluates the geotechnical and geo-engineering properties of the South Pars Zone (SPZ) marls in Assalouyeh, Iran. These marly beds mostly belong to the Aghajari and Mishan formations which entail the gray, cream, black, green, dark red and pink types. Marls can be observed as rock (soft rock) or soil. Marlstone outcrops show a relatively rapid change to soils in the presence of weathering. To geotechnically characterise the marls, field and laboratory experiments such as particle-size distribution, hydrometer, Atterberg limits, uniaxial compression, laboratory direct-shear, durability and carbonate content tests have been performed on soil and rock samples to investigate the physico-mechanical properties and behaviour of the SPZ marls in order to establish empirical relations between the geo-engineering features of the marls. Based on the experiments conducted on marly soils, the USCS classes of the marls is CL to CH which has a LL ranging from 32 to 57% and PL ranging from 18 to 27%. Mineralogical analyses of the samples revealed that the major clay minerals of the marls belong to the smectite or illite groups with low to moderate swelling activities. The geomechanical investigations revealed that the SPZ marls are classified as argillaceous lime, calcareous marl and marlstone (based on the carbonate content) which show variations in the geomechanical properties (i.e., with a cohesion ranging from 97 to 320 kPa and a friction angle ranging from 16 to 35 degrees). The results of the durability tests revealed that the degradation potential showed a wide variation from none to fully disintegrated. According to the results of the experiments, the studied marls have been classified as calcareous marl, marlstone and argillaceous lime due to the variations in the carbonate and clay contents. The results have shown that an increase in the carbonate content leads to a decrease in the degradation potential and an increase in the density and strength parameters such as durability and compressive strength. A comparison of the empirical relationships obtained from the regression analyses with similar studies revealed that the results obtained herein are reasonably reliable.

Effect of elevated temperature on physico-mechanical properties of metakaolin blended cement mortar

  • Morsy, M.S.;Rashad, A.M.;El-Nouhy, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • An experimental investigation was conducted to evaluate the performance of mortars with and without Metakaolin (MK) exposed to elevated temperatures $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ for two hours. The binder to sand ratio was kept constant (1:5.23). The ordinary Portland cement (OPC) was replaced with MK at 0%, 5%, 10% 20% and 30%. All mixtures were designed to have a flow of $94{\pm}5%$. The compressive strength of mortars before and after exposure to elevated temperature was determined. The formation of various decomposition phases were identified using X-ray diffractometry (XRD) and differential thermal analysis (DTA). The microstructure of the mortars was examined using scanning electron microscope (SEM). Test results indicated that MK improves the compressive strength before and after exposure to elevated temperature and that the 20% cement replacement of MK is the optimum percentage.

Physico-Mechanical Properties of Cement-Bonded Boards Produced from Mixture of Corn Cob Particles and Gmelina arborea Sawdust

  • Adelusi, Emmanuel Adekanye;Olaoye, Kayode Oladayo;Adelusi, Felicia Temitope;Adedokun, Samuel Ayotunde
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.79-89
    • /
    • 2021
  • Cement bonded boards of 10 mm in thickness were produced from the mixture of Gmelina arborea sawdust and corn cob particles. The strength and dimensional stability of cement bonded composites produced from these two mixtures were examined. A total of thirty experimental boards were produced at density level of 1,000 kg/㎥ with cement to fibre ratio of 2.5:1 and 3:1 and five (5) blending proportions of G. arborea sawdust to corn cob particles of 100:0; 75:25; 50:50; 25:75 and 100:0. The effect of the cement to fibre ratio and blending proportion on the Water Absorption (WA), Thickness Swelling (TS), Modulus of Rupture (MOR), and Modulus of Elasticity (MOE) were determined. The result indicates that as the mixing ratio of cement to fibre and blending proportion of maize cob (75%) to G. arborea (25%) increased, the thickness swelling, water absorption decreased, whereas the MOR and MOE increased. It also shows that most dimensionally stable and flexural strength boards were produced at the highest level of mixing ratios (3:1) and blending proportion of G. arborea to corn cob 25:75. However, the analysis of variance shows that TS and WA were significantly different, whereas, MOE and MOR were not significantly affected by mixing ratios and blending proportions. Finding of this study has shown that maize cob particles are suitable for cement bonded board production.

Geomechanical analysis of elastic parameters of the solid core of the Earth

  • Guliyev, Hatam H.
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • It follows from the basic principles of mechanics of deformable solids relating to the strength, stability and propagation of elastic waves that the Earth's inner core cannot exist in the form of a spherical structure in the assumed thermobaric conditions and calculation values of physico-mechanical parameters. Pressure level reaches a value that is significantly greater than the theoretical limit of medium strength in the model approximations at the surface of the sphere of the inner core. On the other hand, equilibrium state of the sphere is unstable on the geometric forming at much lower loads under the influence of the "dead" surface loads. In case of the action of "follower" loads, the assumed pressure value on the surface of the sphere is comparable with the value of the critical load of "internal" instability. In these cases, due to the instability of the equilibrium state, propagation of homogeneous deformations becomes uneven in the sphere. Moreover, the elastic waves with actual velocity cannot propagate in such conditions in solid medium. Violation of these fundamental conditions of mechanics required in determining the physical and mechanical properties of the medium should be taken into account in the integrated interpretations of seismic and laboratory (experimental) data. In this case, application of the linear theory of elasticity and elastic waves does not ensure the reliability of results on the structure and composition of the Earth's core despite compliance with the required integral conditions on the mass, moment of inertia and natural oscillations of the Earth.

Physico-Chemical Properties of Starches from Atlantic and Bora Valley Potato Cultivar with Different Colors (색깔이 다른 대서와 보라밸리 감자 전분의 이화학적 특성)

  • Lee, Jae-Soon;Choi, Mi-Kyeong;Moon, Eun-Young;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.542-547
    • /
    • 2010
  • Physico-chemical properties of starches from potato cultivars with different colors were investigated. White Atlantic potato had 10% higher starch yield than violet Bora Valley potato. It turned out that the shape and structure of Atlantic and Bora Valley potato starch were the same by mechanical analysis using X-ray and SEM. The ratio of $50\;{\mu}m$ particle in starches from Atlantic and Bora Valley potato was $45.44\pm2.79%$ and $42.37\pm1.03%$ respectively. The particle size of Atlantic potato starch was less than that of Bora Valley; however, there was no significant difference (p<0.05). As for moisture coupling, there was no difference (p<0.05) between the two potatoes. Swelling power showed a high increase from $65^{\circ}C$ to $80^{\circ}C$. The swelling power of Atlantic starch was higher by about 0.3% than that of Bora Valley at $90^{\circ}C$. Since Atlantic has smaller starch particles than Bora Valley, more starch particles are contained in the same size, and hence a difference in swelling power. As a result of measuring the gelatinization of potato starches from Atlantic and Bora Valley, a higher gelatinization start, climax, and complete temperatures occurred at Bora Valley than Atlantic. As for gelatinization enthalpy, Bora Valley starch with a higher gelatinization temperature consumed more energy for gelatinization.

Phosphoric Acid-doped SDF-F/poly(VI-co-MPS)/PTFE Membrane for a High Temperature Proton Exchange Membrane Fuel Cell

  • Lee, Jong-Won;Yi, Cheol-Woo;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1902-1906
    • /
    • 2011
  • Sulfonated poly(fluorinated arylene ether)s (SDF-F)/poly[(N-vinylimidazole)-co-(3-methacryloxypropyl-trimethoxysilane)] (poly(VI-co-MPS))/poly(tetrafluoroethylene) (PTFE) is prepared for a high temperature proton exchange membrane fuel cell (PEMFC). The reaction of the membrane with phosphoric acid forms silicate phosphor, as a chemically bound proton carrier, in the membrane. Thus-formed silicate phosphor, nitrogen in the imidazole ring, and physically bound phosphoric acid act as proton carriers in the membrane. The physico-chemical and electrochemical properties of the membrane are investigated by various analytical tools. The phosphoric acid uptake and proton conductivity of the SDF-F/poly(VI-co-MPS)/PTFE membrane are higher than those of SDF-F/PVI/PTFE. The power densities of cells with SDF-F/poly(VI-co-MPS)/PTFE membranes at 0.6 V are 286, 302, and 320 mW $cm^{-2}$ at 150, 170, and 190 $^{\circ}C$, respectively. Overall, the SDFF/poly(VI-co-MPS)/PTFE membrane is one of the candidates for anhydrous HT-PEMFCs with enhanced mechanical strength and improved cell performance.

Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding

  • Ouda, Ahmed S.
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.61-75
    • /
    • 2014
  • This study aimed to investigate the suitability of some concrete components for producing "high-performance heavy density concrete" using different types of aggregates that could enhances the shielding efficiency against ${\gamma}$-rays. 15 mixes were prepared using barite, magnetite, goethite and serpentine aggregates along with 10% silica fume, 20% fly ash and 30% blast furnace slag to total OPC content for each mix. The mixes were subjected to compressive strength at 7, 28 and 90 days. In some mixes, compressive strengths were also tested up to 90 days upon replacing sand with the fine portions of magnetite, barite and goethite. The mixes containing magnetite along with 10% SF reaches the highest compressive strength exceeding over M60 requirement by 14% after 28 days. Whereas, the compressive strength of concrete containing barite was very close to M60 and exceeds upon continuing for 90 days. Also, the compressive strength of high-performance concrete incorporating magnetite fine aggregate was significantly higher than that containing sand by 23%. On the other hand, concrete made with magnetite fine aggregate had higher physico-mechanical properties than that containing barite and goethite. High-performance concrete incorporating magnetite fine aggregate enhances the shielding efficiency against ${\gamma}$-rays.

Study of the environmental assessment of heavy metals bearing slag utilization (중금속 함유 폐기물의 재사용을 위한 환경적 평가에 관한 연구)

  • Bae, Hae-Ryong;Gwon, Yeong-Bae;Moszkowicz Pierre
    • 연구논문집
    • /
    • s.28
    • /
    • pp.161-172
    • /
    • 1998
  • In the recycling industry, the recuperation of zinc from Electric Arc Furnace dust by the Waelz process generates important quantities of slag. This slag presents good mechanical properties, and for the most siliceous slag. a high stability which would enable its use by total or partial substitution of certain granulates in civil engineering Our study (within the framwork of a European programme cofunded by the European Commission-DGXII) concerns the physico-chemical and mineralogical characterization and leaching behaviour of several types of Waelz slag. The leaching tests are regulatory tests and specific characterization tests of leaching behaviour. They take into account the influence of several main parameters of the valorization scenarios envisaged for the slag(e.g. pH, Redox potential, chemical nature of the leachant, type of contact-liquid/ solid etc.).

  • PDF

Engineering Geological Characteristics of Freeze-Thaw Weathered Gneiss in the Wonju Area, Korea

  • Um, Jeong-Gi;Woo, Ik;Park, Hyuck Jin
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2014
  • We present the results of an experimental physical weathering study that focuses on fresh and slightly weathered gneiss samples from the Wonju area of Korea. The study investigated changes in the physico-mechanical properties of these samples during accelerated laboratory-based weathering, including analyses of microfracture formation. The deteriorated samples used in the study were subjected to 100-150 freeze-thaw cycles, with index properties and microfracture geometries measured between each cycle. Each complete freeze-thaw cycle lasted 24 hours, and consisted of 2 hours of saturation in a vacuum chamber, 8 hours of freezing at $-21^{\circ}C{\pm}1^{\circ}C$, and 14 hours of thawing at room temperature. Specific gravity and seismic velocity values were negatively correlated with the number of freeze-thaw cycles, whereas absorption values tended to increase. The amount of deterioration of the rock samples was dependent on the degree of weathering of the rock prior to the start of the analysis. Absorption, specific gravity, and seismic velocity values can be used to infer the amount of physical weathering experienced by a gneiss in the study area. The sizes and density of microfracture in the rock specimens varied with the number of freeze-thaw cycles. We found that box fractal dimensions can be used to quantify the formation and propagation of microfracture in the samples. In addition, these box fractal dimensions can be used as a weathering index for the mid-and long-term prediction of rock weathering. The present results indicate that accelerated-weathering analysis can provide a detailed overview of the weathering characteristics of deteriorated rocks.