• 제목/요약/키워드: physical transition

검색결과 623건 처리시간 0.028초

인터럽트 병합 최적화를 통한 네트워크 장치 에너지 절감 방법 연구 (A Study on Energy Savings in a Network Interface Card Based on Optimization of Interrupt Coalescing)

  • 이재열;한재일;김영만
    • 한국IT서비스학회지
    • /
    • 제14권3호
    • /
    • pp.183-196
    • /
    • 2015
  • The concept of energy-efficient networking has begun to spread in the past few years, gaining increasing popularity. A common opinion among networking researchers is that the sole introduction of low consumption silicon technologies may not be enough to effectively curb energy requirements. Thus, for disruptively boosting the network energy efficiency, these hardware enhancements must be integrated with ad-hoc mechanisms that explicitly manage energy saving, by exploiting network-specific features. The IEEE 802.3az Energy Efficient Ethernet (EEE) standard is one of such efforts. EEE introduces a low power mode for the most common Ethernet physical layer standards and is expected to provide large energy savings. However, it has been shown that EEE may not achieve good energy efficiency because mode transition overheads can be significant, leading to almost full energy consumption even at low utilization levels. Coalescing techniques such as packet coalescing and interrupt coalescing were proposed to improve energy efficiency of EEE, but their implementations typically adopt a simple policy that employs a few fixed values for coalescing parameters, thus it is difficult to achieve optimal energy efficiency. The paper proposes adaptive interrupt coalescing (AIC) that adopts an optimal policy that could not only improve energy efficiency but support performance. AIC has been implemented at the sender side with the Intel 82579 network interface card (NIC) and e1000e Linux device driver. The experiments were performed at 100 M bps transfer rate and show that energy efficiency of AIC is improved in most cases despite performance consideration and in the best case can be improved up to 37% compared to that of conventional interrupt coalescing techniques.

트레드밀 보행 시 단일 3축 가속도센서를 사용한 대사에너지 소모량 예측 (Prediction of energy expenditure from a tri-axial accelerometer during treadmill walking)

  • 이희영;박선우;김승현;이동엽;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권2호
    • /
    • pp.79-84
    • /
    • 2011
  • The purpose of this study was to investigate the relevance of the prediction equations derived from the relationship between metabolic energy expenditure and kinetic energy, for different speeds of walking and running over the treadmill. Seven male subjects participated in this study. A tri-axial accelerometer was attached on between the left and right posterior superior iliac spines. Kinetic energy was calculated by the integration of acceleration data and compared with the metabolic energy measured by a gas analyzer. Correlation coefficients were determined to find a relationship between the kinetic energy and the metabolic energy expenditure. Also, the difference between measured and predicted values was used to find the relevance for individual and group equations. Results showed a relatively good correlation between the measured metabolic energy and the calculated kinetic energy. In addition, a dramatic increase in kinetic energy was observed at the transition speed of walking and running (6 km/h). There was no difference in how to predict the kinetic energy expenditure for individual and group even though people have different physical characteristics. This study would be useful to predict metabolic energy expenditures by the regression analysis with acceleration data.

환자중심성의 개념적 구성 요소: 환자와 가족구성원의 관점 (Conceptual Constructs of Patient Centeredness: Perspective of Patients and Family Members)

  • 김은나;옥민수;신유경;조민우;이진용;도영경
    • 한국의료질향상학회지
    • /
    • 제25권2호
    • /
    • pp.26-43
    • /
    • 2019
  • Purpose:The objective of this study was to identify the conceptual constructs of patient centeredness from the perspective of patients and family members in Korea, and to compare them with those included in the Picker Institute framework. Methods: Two focus group discussions were conducted. Each focus group consisted of six participants who had experienced being either a patient or a caregiver. We carried out a thematic analysis, and then compared the contents of our focus group discussions with the components of patient-centered care outlined by the Picker Institute. Results: Six conceptual constructs of patient centeredness emerged from the focus group discussions. Five of these overlapped with those outlined by the Picker Institute: 1)respect for patients' values, preferences, and needs, 2) coordination and integration of care, 3) information, communication, and education, 4) physical comfort, and 5) emotional support and alleviation for fear and anxiety. A new component that was not mentioned in the Picker Institute framework emerged from this study: "ease of making a complaint." Currently, "involvement of family and friends" and "continuity and transition" were not prominent components of patient centeredness according to our focus group discussions. Conclusions: This study presents the conceptual constructs of patient centeredness, five of which overlap with those outlined by the Picker Institute, and provides a qualitative basis of the patient experience survey currently being implemented by the Health Insurance Review & Assessment Service in Korea.

Rb2LiCeCl6 할라이드 섬광체의 열형광 특성 (Thermoluminescence of Rb2LiCeCl6 Halide Scintillator)

  • 김성환
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.1211-1215
    • /
    • 2014
  • 본 논문에서는 신소재 $Rb_2LiCeCl_6$ 할라이드 섬광체를 개발하고, 개발된 섬광체의 섬광 및 열형광 특성에 대하여 조사하였다. $Rb_2LiCeCl_6$의 섬광스펙트럼은 $Ce^{3+}$ 이온의 4f ${\rightarrow}$ 5d 천이에 따라 파장범위가 350~410 nm, 피이크 파장은 368 nm 및 378 nm이었다. 섬광감쇠시간 특성은 71 ns의 빠른 시간 특성 성분(85%)과 405 ns의 느린 성분(15%)의 2개로 구성되며, 잔광에 기여한 포획준위의 물리적 변수를 열형광 측정법에서 분석한 결과, 포획 준위의 활성화에너지, 발광차수 및 주파수 인자의 평균값은 각각 0.75 eV, 1.48 및 $3.0{\times}10^8s^{-1}$이었다.

$MgB_2$ Thin Films on SiC Buffer Layers with Enhanced Critical Current Density at High Magnetic Fields

  • Putri, W.B.K.;Tran, D.H.;Kang, B.;Lee, N.H.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.30-33
    • /
    • 2012
  • We have grown $MgB_2$ superconducting thin films on the SiC buffer layers by means of hybrid physical-chemical vapor deposition (HPCVD) technique. Prior to that, SiC was first deposited on $Al_2O_3$ substrates at various temperatures from room temperature to $600^{\circ}C$ by using the pulsed laser deposition (PLD) method in a vacuum atmosphere of ${\sim}10^{-6}$ Torr pressure. All samples showed a high transition temperature of ~40 K. The grain boundaries of $MgB_2$ samples with SiC layer are greater in amount, compare to that of the pure $MgB_2$ samples. $MgB_2$ with SiC buffer layer samples show interesting change in the critical current density ($J_c$) values. Generally, at both 5 K and 20 K measurements, at lower magnetic field, all $MgB_2$ films deposited on SiC buffer layers have low $J_c$ values, but when they reach higher magnetic fields of nearly 3.5 Tesla, $J_c$ values are enhanced. $MgB_2$ film with SiC grown at $600^{\circ}C$ has the highest $J_c$ enhancement at higher magnetic fields, while all SiC buffer layer samples exhibit higher $J_c$ values than that of the pure $MgB_2$ films. A change in the grain boundary morphologies of $MgB_2$ films due to SiC buffer layer seems to be responsible for $J_c$ enhancements at high magnetic fields.

폴리(테트라메틸렌 글리콜)(PTMG)/폴리카프로락톤)(PCL) 폴리올의 혼합비가 수분산계 폴리우레탄의 물성에 미치는 영향 (Effects of Physical Properties on Waterborne Polyurethane with Poly(tetramethylene glycol) (PTMG) and Polycaprolactone (PCL) Contents)

  • 양윤규;곽노석;황택성
    • 폴리머
    • /
    • 제29권1호
    • /
    • pp.81-86
    • /
    • 2005
  • 본 연구에서는 폴리(테트라메틸렌 글리콜)(PTMG), 폴리카프로락톤(PCL) 및 isophron diisocyanate(IPDI)와 dimethylol propionic acid(DMPA)를 이용하여 물에 분산이 가능한 수분산계 폴리우레탄을 제조하였다. 또한, 사슬연장제의 함량을 변화시키면서 입도분석과 기계적 물성 등을 시험하였다. 유화된 폴리우레탄의 입경은 50~200 nm이었으며, PCL과 사슬연장제의 함량이 많을수록 작아졌으며, $T_g$는 -70~-45 ${\circ}C$ 범위이고 사슬연장제의 함량이 증가함에 따라 $T_g$는 다소 상승하였다. PTMG와 PCL을 혼합하여 합성한 폴리우레탄의 $T_g$는 이들을 각각 사용하여 합성한 $T_g$와 비슷하게 나타났다. 인장강도는 PCL과 사슬연장제의 함량이 증가할수록 높아졌으며 신율은 낮아졌다. 폴리올을 혼합하였을 경우에는 단독으로 합성한 것보다 전반적으로 기계적 물성이 저하되는 것을 확인하였다.

아크릴수지와 헥사메틸렌 디이소시아네이트-뷰렛에 의한 고 고형분 도료의 제조 및 도막물성 연구 (Preparation and Physical Properties of High-Solid Coatings by Acrylic Resins and Hexamethylene Diisocyanate-Biuret)

  • 유혁재;정동진;박홍수;김성길;임완빈
    • 폴리머
    • /
    • 제28권3호
    • /
    • pp.273-280
    • /
    • 2004
  • 고형분 80%인 아크릴수지 (에틸 메타크릴레이트-2-히드록시프로필 메타크릴레이트-노르말부틸 아크릴레이트-아크릴산 : EHBC)를 합성한 후 이를 헥사메틸렌 디이소시아네이트-뷰렛 경화제로서 상온경화시켜 고 고형분 도료 (에틸 메타크릴레이트-2-히드록시프로필 메타크릴레이트-노르말부틸 아크릴레이트-아즈릴산/헥사메틸렌 디이소시아네이트-뷰렛 : EHBCN)를 제조하였다. 진동자법에 의한 점탄성 측정에서 제조된 도료인 EHBCN-4 (EHBC-4 정적 $T_{g}$ $0^{\circ}C$)와 EHBCN-7 (EHBC-7 : 정적 $T_{g}$ 3$0^{\circ}C$)의 경화시간은 6.2시간과 4.5시간으로, 또한 경화된 도막의 동적 $T_{g}$$14^{\circ}C$$39^{\circ}C$로 각각 나타났다. 도막 물성 중 접착력과 굴곡성은 카프로락톤 아크릴레이트 단량체 성분이 함유된 EHBCN쪽의 물성이 현저히 좋게 나타나, 카프로락톤 아크릴레이트 성분이 접착력과 굴곡성을 증진시켰음이 입증되었다.

유화제 첨가 용융압출을 이용한 참당귀 성형체의 페놀성분 나노화 및 용해도 향상 (Enhancement of Solubility and Nanonization of Phenolic Compound in Extrudate from Angelica gigas Nakai by Hot Melt Extrusion using Surfactant)

  • ;조현종;고은지;임정대;박철호;강위수
    • 한국약용작물학회지
    • /
    • 제26권4호
    • /
    • pp.317-327
    • /
    • 2018
  • Background: The root of Angelica gigas Nakai is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, the poor water solubility of the active components in A. gigas Nakai is a major obstacle to its bioavailability. Methods and Results: This work aimed at enhancing the solubility of the active compounds of A. gigas Nakai by a chemical (using a surfactant) and physical (hot melt extrusion, HME) crosslinking method. Fourier transform infrared spectroscopy revealed multiple peaks in the case of the extrudate solids, attributable to new functional groups including carboxylic acid, alkynes, and benzene derivatives. Differential scanning calorimetry analysis showed that the extrudate soilid had a lower glass transition temperature ($T_g$) and enthalpy (${\Delta}H$) ($T_g:43^{\circ}C$, ${\Delta}H$ : < 6 J/g) as compared to the non-extrudate ($T_g:68.5^{\circ}C$, ${\Delta}H:123.2$) formulations. X-ray powder diffraction analysis revealed the amorphization of crystalline materials in the extrudate solid. In addition, enhanced solubility (53%), nanonization (403 nm), and a higher amount of extracted phenolic compounds were achieved in the extrudate solid than in the non-extrudate (solubility : 36%, nanonization : 1,499 nm) formulation. Among the different extrudates, acetic acid and span 80 mediated formulations showed superior extractions efficiency. Conclusions: HME successfully enhanced the production of amorphous nano dispersions of phenolic compound including decursin from extrudate solid formulations.

Effect of Gamma Ray Irradiation on the Mechanical and Thermal Properties of MWNTs Reinforced Epoxy Resins

  • Shin, Bum Sik;Shin, Jin Wook;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.137-143
    • /
    • 2011
  • Epoxy resins are widely used as high performance thermosets in many industrial applications, such as coatings, adhesives and composites. Recently, a lot of research has been carried out in order to improve their mechanical properties and thermal stability in various fields. Carbon nanotubes possess high physical and mechanical properties that are considered to be ideal reinforcing materials in composites. CNT-reinforced epoxy system hold the promise of delivering superior composite materials with their high strength, light weight and multi functional features. Therefore, this study used multi-walled carbon nanotubes (MWNT) and gamma rays to improve the mechanical and thermal properties of epoxy. The diglycidyl ether of bisphenol A (DGEBA) as epoxy resins were cured by gamma ray irradiation with well-dispersed MWNTs as a reinforcing agent and triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. The flexural modulus was measured by UTM (universal testing machine). At this point, the flexural modulus factor exhibits an upper limit at 0.1 wt% MWNT. The thermal properties had improved by increasing the content of MWNT in the result of TGA (thermogravimetric analysis). However, they were decreased with increasing the radiation dose. The change of glass transition temperature by the radiation dose was characterized by DMA (dynamic mechanical analysis).

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.