• Title/Summary/Keyword: physical phenomena

Search Result 811, Processing Time 0.029 seconds

STATISTICAL PHYSICS APPROACH TO BIOLOGICAL PHENOMENA

  • Sung, Wokyng
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.7-7
    • /
    • 1996
  • A new trend that emerges at the turn of the century is the physical approach to biological phenomena. It is expected that biology provides novel materials for condensed matter physics and, most importantly, a revolutionary paradigm for physics at large. On the other hand, physics, if properly extended, is expected to provide systematic and quantitative understanding of biological phenomena, and multitude of biotechnological applications. (omitted)

  • PDF

A Survey of Secondary School Science Teachers’ Thinking on Classifying Phenomena Related to Dissolution of Ionic Compound and Acid into Physical and Chemical Change (이온결합 화합물과 산의 용해 현상을 물리변화와 화학변화로 구분하는 문제에 대한 중·고등학교 과학교사들의 인식 조사)

  • Baek, Seong Hye;Kim, Seon Gyeong
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.561-568
    • /
    • 2002
  • This study examined secondary school science teachers' thinking on physical and chemical change. For this research, we analysed the answers of 80 secondary school science teachers. According to the result of the analysis,teachers had various opinions when they classified phenomena of dissolving ionic compound or diluting acid into phys-ical change and chemical change. Many teachers tended to classify similar phenomena into different change when those were represented with different focus. It means that teachers' opinions were not consistent.

Effects of the Explanations of Physical Phenomena Given in Non-Physics Textbooks on the Formation of Students' Physical Conceptions (물리 외 교과서에 제시된 물리적 현상 설명이 학생들의 물리 개념 형성에 미치는 영향)

  • Park, Mi-Jin;Kim, Young-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.2
    • /
    • pp.155-164
    • /
    • 2003
  • The purpose of the current study was to investigate the effects of explanations about physical phenomena given in non-physics textbooks on the formation of student physical conceptions. Two classes, 39 students in each, were sampled from two middle schools in Pusan, Korea, and two kinds of test tools for investigating student conceptions were developed for the study. The first test tool(a) investigated student conceptions after reading explanations about physical phenomena in non-physics textbooks, while the second(b) investigated student conceptions after reading explanations revised by physics education experts about the same physical phenomena. The two test tools were applied to each class, and for a fair invetigation, test(a) followed by test(b) was applied to one class, while test(b) followed by test(a) was applied to the other class. The results were as follows: In both classes, the students' level of understanding from explanations revised by physics education experts was significantly (p < .01) higher than that from explanations in non-physics textbooks. As such, it is feasible that false or inappropriate explanations in non-physics textbooks can cause student misconceptions. Moreover, the improper expression of physical science concepts, improper choice of scientific terms, and incorrect grammatical structures, along with the use of unsuitable examples and improper model pictures can make it difficult for students to understand physics concepts. Furthermore, differences in the terms used in physics textbook and those used in other textbooks can also confuse students' learning.

The Modern Food Consumption Phenomena and It's Meaning in Context of Consumption Culture (현대 음식 소비현상의 소비문화적 의미에 관한 연구)

  • Sohn, Sang-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.241-246
    • /
    • 2006
  • The purpose of this study was to understand current food consumption phenomena in the context of Korea's consumption culture and economy. For this purpose, food consumption phenomena and the underlying meaning of consumption culture were investigated. The study indicated that current food consumption phenomena were characterized by increased eating habits away from home, consuming more fast food and processed foods, westernized diet, eager for taste, and overwhelming well-being products, which could result in environmental problems as well as malign physical and mental defects. It was argued that current food consumption phenomena had been mainly affected by the commercial food industry and consumers' cultural consideration. Finally, this paper discussed several approaches to motivate consumers' awareness and how to change their food consumption culture, and further government policy efforts.

A Study on the Design and Implementation of Mathematics and Science Integrated Instruction (수학과학통합교육의 설계 및 실행에 대한 연구)

  • Lee, Hei-Sook;Rim, Hae-Mee;Moon, Jong-Eun
    • The Mathematical Education
    • /
    • v.49 no.2
    • /
    • pp.175-198
    • /
    • 2010
  • To understand natural or social phenomena, we need various information, knowledge, and thought skills. In this context, mathematics and sciences provide us with excellent tools for that purpose. This explains the reasons why there is always significant emphasis on mathematics and sciences in school education; some of the general goals in school education today are to illustrate physical phenomena with mathematical tools based on scientific consideration, to encourage students understand the mathematical concepts implied in the phenomena, and provide them with ability to apply what they learned to the real world problems. For the mentioned goals, we extract six fundamental principles for the integrated mathematics and science education (IMSE) from literature review and suggest a instructional design model. This model forms a fundamental of a case study we performed to which the IMSE was applied and tested to collect insights for design and practice. The case study was done for 10 students (2 female students, 8 male ones) at a coeducational high school in Seoul, the first semester 2009. Educational tools including graphic calculator(Voyage200) and motion detector (CBR) were utilized in the class. The analysis result for the class show that the students have successfully developed various mathematical concepts including the rate of change, the instantaneous rate of change, and derivatives based on the physical concepts like velocity, accelerate, etc. In the class, they described the physical phenomena with mathematical expressions and understood the motion of objects based on the idea of derivatives. From this result, we conclude that the IMSE builds integrated knowledge for the students in a positive way.

Molecular Dynamics Simulation for Size-Dependent Properties and Various Nanoscale Phenomena

  • Seungho;Joon Sik;Young Ki;Sung San;Jung Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.28-35
    • /
    • 2004
  • Stimulated by novel phenomena observed in molecular aggregates, recent developments in engineering fields of microscopic scales are creating tremendous opportunities for future nanotechnology-based applications. Investigation in the field involves sub-nanosecond or sub-micrometer interactions between extremely small systems, but researches, to date in these physical extremes have been quite limited. Here, we shed light on some of nanoscale phenomena using molecular dynamics simulation: visualization of various phenomena of nanoscales and exploration of size-dependent mechanical properties.

CFD/CAE Analysis of QC/DC Bellows for LNG Bunkering (LNG 벙커링용 QC/DC 밸로즈의 유동/구조 해석)

  • Jang, Sung-Cheol;Eom, Jeong-Pil;Jung, Hyun-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.191-195
    • /
    • 2018
  • By using an ANSYS product suite (CFX, Ansys Multiphysics), which is a powerful tool for multiphysics analysis of complicated physical phenomena, we performed a structural stress analysis based on fluid flow and heat transfer phenomena within a quick connect/disconnect (QC/DC) bellows system. Considering the extremely low temperatures in the QC/DC environment, an approach to the problem based on complex multi-physics phenomena, where different phenomena interact with each other, is crucial. Therefore, we use a numerical analysis technique where fluid-thermal-structural interactions are combined. In conclusion, when low temperature fluids flow inside bellows, the expected service life is conspicuously reduced due to the thermal stress caused by heat transfer. Therefore, in future research, a structure with considerably reduced thermal stress by robust design optimization will be derived.

RESOLUTION OF FUNCTIONS OF SLOW GROWTH

  • SHIM HONG TAE;PARK CHIN HONG;LEE JEONG KEUN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.747-757
    • /
    • 2005
  • A physical variable is customarily thought of as a function. Another way of describing a physical variable is to specify it as a functional, whose special type is called a distribution. It turns out that the distribution concept provide a better mechanism for analyzing certain physical phenomena than does the function concept. By using wavelets with high regularity we give a resolution of functions with slow growth.