• 제목/요약/키워드: physical characterization

검색결과 628건 처리시간 0.027초

Mercurous bromide $(Hg_2Br_2)$ crystal growth by physical vapor transport and characterization

  • Kim, S.K.;S.Y. Son;K.S. Song;Park, J.G.;Kim, G.T.
    • 한국결정성장학회지
    • /
    • 제12권6호
    • /
    • pp.272-282
    • /
    • 2002
  • Mercurous bromide ($Hg_{2}0Br_{2}$) crystals hold promise for many acousto-optic and opto-electronic applications. This material is prepared in closed ampoules by the physical vapor transport (PVT) growth method. Due to the temperature gradient between the source and the growing crystal region, the buoyancy-driven convection may occur. The effects of thermal convection on the crystal growth rate was investigated in this study in a horizontal configuration for conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. The results showed that the growth rate increases linearly with Grashof number, and for 0.2 $\leq$ Ar (transport length-to-height, L/H)$\leq$1.0 sharply for Ar=5 and $\Delta$T=30 K. We have also shown that the magnitude of convection decreases with the Ar. For gravity levels of less than $10^{-2}$g the non-uniformity of interfacial distribution is negligible.

Fluorescence Microscopy of Condensed DNA Conformations of Bacterial Cells

  • Suleymanoglu, Erhan
    • Journal of Microbiology
    • /
    • 제40권4호
    • /
    • pp.319-326
    • /
    • 2002
  • Cellular DNA in prokaryotes is organized in nucleic acid-protein self-assemblies referred to as the nucleoid. The physical forces responsible for its stability inside the poor solvent properties of the cytoplasm and their functional implications are not understood. Studies on the organisation and functioning of the cytosol of cells largely rely on experimental protocols performed in highly dilute solutions using biochemically purified molecules, which is not a reliable substitute for the situation existing in vivo. Our current research interest is focused on the characterization of biological and physical forces determining the compaction and phase separation of DNA in Escherichia coli cytoplasm. We have emphasized the effect of excluded volume in solutions with high macromolecular concentrations (macromolecular crowding) upon self-association patterns of reactions. The prokaryotic cytosol was simulated by addition of inert polymer polyethylene glycol (PEG) (average molecular weight 20000), as an agent which afterwards facilitates the self-association of macromolecules. Fluorescence microscopy was used for direct visualization of nucleoids in intact cells, after staining with DAPI (4',6-diamidino-2-phenylindole dihydrochloride). Addition of the crowding agent PEG 20,000, in increasing concentrations generated progressively enhanced nucleoid compaction, the effect being stronger in the presence of 0.2 M NaCl and 5 mM MgCl$\_$2/. Under these conditions, the nucleoids were compacted to volumes of around 2 ㎛$\^$3/ or comparable sizes with that of living cells.

Characterization of Electrical Properties and Gating Effect of Single Wall Carbon Nanotube Field Effect Transistor

  • Heo, Jin-Hee;Kim, Kyo-Hyeok;Chung, Il-Sub
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.169-172
    • /
    • 2008
  • We attempted to fabricate carbon nanotube field effect transistor (CNT-FET) using single walled carbon nanotube(SWNT) on the heavily doped Si substrate used as a bottom gate, source and drain electrode were fabricated bye-beam lithography on the 500 nm thick $SiO_2$ gate dielectric layer. We investigated electrical and physical properties of this CNT-FET using Scanning Probe Microscope(SPM) and conventional method based on tungsten probe tip technique. The gate length of CNT-FET was 600 nm and the diameter of identified SWNT was about 4 nm. We could observed gating effect and typical p-MOS property from the obtained $V_G-I_{DS}$ curve. The threshold voltage of CNT-FET is about -4.6V and transconductance is 47 nS. In the physical aspect, we could identified SWNT with phase mode of SPM which detecting phase shift by force gradient between cantilever tip and sample surface.

Characterization and Properties of Composites of Woodflour and Polylactic Acid

  • Febrianto, Fauzi;Yoshioka, Mariko;Nagai, Yuko;Syafii, Wasrin;Shiraishi, Nobuo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권5호
    • /
    • pp.67-78
    • /
    • 2006
  • Modification of polylactic acid (PLA) and 10% maleic anhydride (MAH) with 15% dicumyl peroxide (DCP) based on MAH weight was conducted in the kneader at $160^{\circ}C$ and 30~70 rpm, for 15 min. The resulting MAH-modified PLA (PLA-MA) was then evaluated as a compatibilizer for PLA-wood flour (WF) composites. The FTIR and $^1H$-NMR analysis gave evidence of PLA-MA formation. After kneading and reacting with MAH and DCP, the number (Mn) and the weight average (Mw) molecular weights of PLA decreased as compared to the original PLA. The presence of WF in the composites decreased the tensile strength and several other physical properties. The higher the WF loading resulted in the greater the reduction of tensile strength. An addition of 10% PLA-MA as a compatibilizer to the composites improved the tensile strength and several other physical properties, increased the flow temperature, and decreased the melt viscosity. The improved composite revealed 1.42 times increased in tensile strength but not over PLA alone, and absorbed considerably less water compared to those of the composites free-compatibilizer.

실리콘 직접 본딩에 의한 P-N 접합의 특성에 관한 연구 (A Study on Characterization of P-N Junction Using Silicon Direct Bonding)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.615-624
    • /
    • 2017
  • This study investigated the various physical and electrical effects of silicon direct bonding. Direct bonding means the joining of two wafers together without an intermediate layer. If the surfaces are flat, and made clean and smooth using HF treatment to remove the native oxide layer, they can stick together when brought into contact and form a weak bond depending on the physical forces at room temperature. An IR camera and acoustic systems were used to analyze the voids and bonding conditions in an interface layer during bonding experiments. The I-V and C-V characteristics are also reported herein. The capacitance values for a range of frequencies were measured using a LCR meter. Direct wafer bonding of silicon is a simple method to fuse two wafers together; however, it is difficult to achieve perfect bonding of the two wafers. The direct bonding technology can be used for MEMS and other applications in three-dimensional integrated circuits and special devices.

Protein Absorption and Characterization of Hydrogel Polymer Containing 2-Methacryloyloxyethyl Phosphorylcholine as Additive

  • Kim, Duck-Hyun;Sung, A-Young
    • 통합자연과학논문집
    • /
    • 제9권4호
    • /
    • pp.249-254
    • /
    • 2016
  • This study evaluated the physical and optical characteristics of hydrophilic ophthalmic polymer with addition of 2-methacryloyloxyethyl phosphorylcholine in the basic hydrogel ophthalmic lens material, and in particular, the utility of 2-methacryloyloxyethyl phosphorylcholine as an ophthalmic contact lens material for ophthalmologic devices was investigated. In this study 2-methacryloyloxyethyl phosphorylcholine were used as additives. For the preparation of hydrogel lens 2-hydroxyethyl methacrylate, methyl methacrylate, acrylic acid and a cross-linker EGDMA were copolymerized in the presence of AIBN as an initiator. The physical properties of the produced polymers were measured as followings. The refractive index of 1.433~1.393, water content of 35.95~53.16%, contact angle of $70.6{\sim}51.24^{\circ}$, UVB transmittance of 81.2~82.4%, UV-B transmittance of 81.2~82.4% and visible transmittance of 91.4~92.2% were obtained. Also, in case of protein absorption, the measurement showed that absorbance of Reference and MPC-10 sample was 0.2598 and 0.2250 respectively. Based on the results of this study, ophthalmic lens material containing 2-methacryloyloxyethyl phosphorylcholine is expected to be used usefully as a material for high wettability and inhibitor of protein adsorption for ophthalmic hydrogel lens.

Electrical Characteristics of InAlAs/InGaAs/InAlAs Pseudomorphic High Electron Mobility Transistors under Sub-Bandgap Photonic Excitation

  • Kim, H.T.;Kim, D.M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권3호
    • /
    • pp.145-152
    • /
    • 2003
  • Electrical gate and drain characteristics of double heterostructure InAlAs/InGaAs pseudomorphic HEMTs have been investigated under sub-bandgap photonic excitation ($hv). Drain $(V_{DS})-,{\;}gate($V_{DS})-$, and optical power($P_{opt}$)-dependent variation of the abnormal gate leakage current and associated physical mechanisms in the PHEMTs have been characterized. Peak gate voltage ($V_{GS,P}$) and the onset voltage for the impact ionization ($V_{GS.II}$) have been extracted and empirical model for their dependence on the $V_{DS}$ and $P_{opt} have been proposed. Anomalous gate and drain current, both under dark and under sub-bandgap photonic excitation, have been modeled as a parallel connection of high performance PHEMT with a poor satellite FET as a parasitic channel. Sub-bandgap photonic characterization, as a function of the optical power with $h\nu=0.799eV$, has been comparatively combined with those under dark condition for characterizing the bell-shaped negative humps in the gate current and subthreshold drain leakage under a large drain bias.

Czochralski법에 의한 ZnWO4 단결정 성장 및 특성분석 (Single crystal growth of ZnWO4 by the Czochralski method and characterization)

  • 임창성
    • 분석과학
    • /
    • 제23권2호
    • /
    • pp.103-108
    • /
    • 2010
  • Czochralski법에 의한 $ZnWO_4$ 단결정을 [100], [010], [001] 방향으로 성공적으로 성장시켰다. $ZnWO_4$ 단결정 성장을 위한 종자결정은 백금 침을 사용하여 용융액으로부터 모세관 현상을 응용한 결정성장으로 얻을 수 있었다. 각 축 방향에 따른 성장조건이 rotation speed, pulling rate, 성장된 결정의 직경등의 변수를 가지고 조사되어졌다. 성장된 결정의 냉각시 발생되는 균열을 annealing 효과에 의하여 방지할 수 있었다. 성장된 결정의 방위는 Laue back reflection으로 결정하였다. 각 축 방향으로 성장된 결정의 미세구조적 특징이 논하여졌으며, 경도, 열팽창계수 및 유전상수의 물리적 특성이 평가되어졌다.

Systematic investigation of heavy metals from MSWI fly ash and bottom ash samples

  • Ramakrishna., CH;Thriveni., T;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제26권4호
    • /
    • pp.35-44
    • /
    • 2017
  • Disposal of municipal solid waste has become a major problem in many countries around the world. As landfill space for the disposal of ash from Municipal Solid Waste Incineration (MSWI) becomes scarce, numerous reports and researches address the various environmental issues about the municipal solid waste incineration waste management and other particulate matters with the range of 10 ~ 2.5. Although in many developing and industrialization countries landfill with the disposal of municipal solid waste, open incineration has become a common practice. Large municipal waste incinerators are major industrial facilities and have the potential to be significant sources of environmental pollution. Despite the significant volume reduction from incineration, waste recycling is important to ensuring the future welfare of mankind. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. In this paper, we reported the studies on physical and chemical characteristics of municipal solid waste incineration (MSWI) fly ash and bottom ash containing particulate matter whose particulate sizes are lower than $PM_{10}$, $PM_{2.5}$ and heavy metal were investigated.

Synthesis and Characterization of a Ternary Nanocomposite Based on CdSe Decorated Graphene-TiO2 and its Application in the Quantitative Analysis of Alcohol with Reduction of CO2

  • Ali, Asghar;Biswas, Md Rokon Dowla;Areerob, Yonrapach;Nguyen, Dinh Cung Tien;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.381-391
    • /
    • 2018
  • In this work, photocatalytic $CO_2$ reduction over a CdSe-graphene-$TiO_2$ nanocomposite has been studied. The obtained material was successfully fabricated via ultrasonic technique. The physical properties of the as-synthesized materials were characterized by some physical techniques. The $TiO_2$ and CdSe dispersed graphene nanocomposite showed excellent results of strong reduction rates of $CO_2$ compared to the results of bare $TiO_2$ and binary CdSe-graphene. An outstanding point of the combination of CdSe-$TiO_2$ and graphene appeared in the form of great photocatalytic reduction capability of $CO_2$. The photocatalytic activity of the asfabricated composite was tested by surveying for the photoreduction of $CO_2$ to alcohol under UV and visible light irradiation, and the obtained results imply that the as-prepared CdSe-graphene-$TiO_2$ nanocomposite is promising to become a potential candidate for the photocatalytic $CO_2$ reduction.