Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.4.03

Synthesis and Characterization of a Ternary Nanocomposite Based on CdSe Decorated Graphene-TiO2 and its Application in the Quantitative Analysis of Alcohol with Reduction of CO2  

Ali, Asghar (University of Chitral)
Biswas, Md Rokon Dowla (Department of Advanced Materials Science & Engineering, Hanseo University)
Areerob, Yonrapach (Department of Advanced Materials Science & Engineering, Hanseo University)
Nguyen, Dinh Cung Tien (Department of Advanced Materials Science & Engineering, Hanseo University)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Abstract
In this work, photocatalytic $CO_2$ reduction over a CdSe-graphene-$TiO_2$ nanocomposite has been studied. The obtained material was successfully fabricated via ultrasonic technique. The physical properties of the as-synthesized materials were characterized by some physical techniques. The $TiO_2$ and CdSe dispersed graphene nanocomposite showed excellent results of strong reduction rates of $CO_2$ compared to the results of bare $TiO_2$ and binary CdSe-graphene. An outstanding point of the combination of CdSe-$TiO_2$ and graphene appeared in the form of great photocatalytic reduction capability of $CO_2$. The photocatalytic activity of the asfabricated composite was tested by surveying for the photoreduction of $CO_2$ to alcohol under UV and visible light irradiation, and the obtained results imply that the as-prepared CdSe-graphene-$TiO_2$ nanocomposite is promising to become a potential candidate for the photocatalytic $CO_2$ reduction.
Keywords
$CO_2$ reduction; CdSe-graphene-$TiO_2$; Photocatalytic activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Huang, W. K. Ho, S. C. Lee, L. Z. Zhang, G. S. Li, and J. C. Yu, "Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and its Solar-Light-Driven Photocatalytic Degradation of NOx," Langmuir, 24 [7] 3510-16 (2008).   DOI
2 X. F. Yang, J. Chen, L. Gong, M. M. Wu, and J. C. Yu, "Cross-Medal Arrays of Ta-Doped Rutile Titania," J. Am. Chem. Soc., 131 [34] 12048-49 (2009).   DOI
3 D. N. Tafen, R. Long, and O. V. Prezhdo, "Dimensionality of Nanoscale $TiO_2$ Determines the Mechanism of Photoinduced Electron Injection from a CdSe Nanoparticle," Nano Lett., 14 [4] 1790-96 (2014).   DOI
4 Y. Hassan, C. H. Chuang, Y. Kobayashi, N. Coombs, S. Gorantla, G. A. Botton, M. A.Winnik, C. Burda, and G. D. Scholes, "Synthesis and Optical Properties of Linker-Free $TiO_2/CdSe$ Nanorods," J. Phys. Chem. C, 118 [6] 3347-58 (2014).   DOI
5 H. Q. Sun, S. B. Wang, H. M. Ang, M. O. Tade, and Q. Li, "Halogen Element Modified Titanium dioxide for Visible Light Photocatalysis," Chem. Eng. J., 162 [15] 437-47 (2010).   DOI
6 D. W. Boukhvalov and M. I. Katsnelson, "Modeling of Graphite Oxide," J. Am. Chem. Soc., 130 [32] 10697-701 (2008).   DOI
7 H. Q. Sun, Y. Bai, W. Q. Jin, and N. P. Xu, "Visible-Light-Driven $TiO_2$ Catalysts Doped with Low-Concentration Nitrogen Species," Sol. Energy Mater. Sol. Cells, 92 [1] 76-83 (2008).   DOI
8 H. K. Jeong, H. J. Noh, J. Y. Kim, M. H. Jin, C. Y. Park, and Y. H. Lee, "X-ray Absorption Spectroscopy of Graphite Oxide," EPL, 82 [6] 67004-5 (2008).   DOI
9 O. V. Prezhdo, P. V. Kamat, and G. C. Schatz, "Virtual Issue: Graphene and Functionalized Graphene," J. Phys. Chem. C, 115 [8] 3195-97 (2011).   DOI
10 R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. Rao, and I. M. shigami, "Effects of Layer Stacking on the Combination Raman Modes in Graphene," ACS Nano, 5 [3] 1594-99 (2011).   DOI
11 V. Kamat, "Graphene-Based Nanoassemblies for Energy Conversion," J. Phys. Chem. Lett. 2 [3] 242-51 (2011).   DOI
12 X. Lv, W. Fu, C. Hu, Y. Chen, and W. Zhou, "Photocatalytic Reduction of $CO_2$ with $H_2O$ over a Graphene-Modified $NiO_{x-1}Ta_2O_5$ Composite Photocatalyst: Coupling Yields of Methanol and Hydrogen," RSC Adv., 3 [6] 1753-57 (2013).   DOI
13 X. An, K. Li, and J. Tan, "$Cu_2O$/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of $CO_2$," ChemSusChem, 7 [4] 1086-93 (2014).   DOI
14 J. Yu, J. Jin, B. Cheng, and M. Jaroniec, "A Noble Metal-Free Reduced Graphene Oxide-CdS Nanorod Composite for the Enhanced Visible-Light Photocatalytic Reduction of $CO_2$ to Solar Fuel," J. Mater. Chem. A, 2 [10] 3407-16 (2014).   DOI
15 Q. Y. Wang, X. C. Yang, L. N. Chi, and M. M. Cui, "Photoelectrochemical Performance of CdTe Sensitized $TiO_2$ Nanotube Array photoelectrodes," Electrochim. Acta, 91 330-36 (2013).   DOI
16 L. L. Su, J. Lv, H. E. Wang, L. J. Liu, G. Q. Xu, D. M. Wang, Z. X. Zheng, and Y. C. Wu, "Improved Visible Light Photocatalytic Activity of CdSe Modified $TiO_2$ Nanotube Arrays with Different Intertube Spaces," Catal. Lett., 144 [4] 553-60 (2014).   DOI
17 B. Jiang, X. L. Yang, X. Li, D. Q. Zhang, J. Zhu, and G. S. Li, "Core-Shell Structure $CdS/TiO_2$ for Enhanced Visible-Light-Driven Photocatalytic Organic Pollutants Degradation," J. Sol-Gel Sci. Technol., 66 [3] 504-11 (2013).   DOI
18 H. M. Choi, I. A. Ji, and J. H. Bang, "Quantum Dot Solar Cells Prepared Using Electrophoretic Deposition," Bull. Korean Chem. Soc., 34 [3] 713-14 (2013).   DOI
19 H. Shi, G. Chen, C. Zhang, and Z. Zou, "Polymeric $g-C_3N_4$ Coupled with $NaNbO_3$ Nanowires toward Enhanced Photocatalytic Reduction of $CO_2$ into Renewable Fuel," ACS Catal., 4 [10] 3637-43 (2014).   DOI
20 J. Q. Zhang, J. Y. Yang, M. Liu, G. Li, W. X. Li, S. Gao, and Y. B. Luo, "Fabrication of CdTe Quantum Dots sensitized $TiO_2$ Nanorod-Array-Film Photoanodes via the Route of Electrochemical Atomic Layer Deposition," J. Electrochem. Soc., 161 [1] 55-8 (2014).
21 V. Kumar, N. Labhsetwar, S. Meshram, and S. Rayalu, "Functionalized Fly Ash Based Alumino-Silicates for Capture of Carbon Dioxide," Energy Fuels, 25 [10] 4854-61 (2011).   DOI
22 K. Huang, C. L. Sun, and Z. J. Shi, "Transition-Metal-Catalyzed C-C Bond Formation through the Fixation of Carbon Dioxide," Chem. Soc. Rev., 4 [5] 2435-52 (2011).
23 D. C. T. Nguyen and W.-C. Oh, "Ternary Self-Assembly Method of Mesoporous Silica and $Cu_2O$ Combined Graphene Composite by Nonionic Surfactant and Photocatalytic Degradation of Cationic-Anionic Dye Pollutants," Sep. Purif. Technol., 190 77-89 (2018).   DOI
24 M. Aresta, A. Dibenedetto, and A. Angelini, "Catalysis for the Valorization of Exhaust Carbon: from $CO_2$ to Chemicals, Materials, and Fuels. Technological Use of $CO_2$," Chem. Rev., 114 [3] 1709-42 (2014).   DOI
25 S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, "Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons," ACS Nano, 4 [3] 1259-78 (2010).   DOI
26 D. C. T. Nguyen, K.-Y. Cho, and W.-C. Oh, "Synthesis of Frost-like CuO Combined Graphene-$TiO_2$ by Self-Assembly Method and its High Photocatalytic Performance," Appl. Surf. Sci., 412 252-61 (2017).   DOI
27 D. C. T. Nguyen, K.-Y. Cho, and W.-C. Oh, "Synthesis of Mesoporous $SiO_2/Cu_2O$-Graphene Nanocomposites and their Highly Efficient Photocatalytic Performance for Dye Pollutants," RSC Adv., 7 [47] 29284-94 (2017).   DOI
28 D. C. T. Nguyen, K.-Y. Cho, and W.-C. Oh, "A Facile Route to Synthesize Ternary $Cu_2O$ Quantum Dot/Graphene-$TiO_2$ Nanocomposites with an Improved Photocatalytic Effect," Fullerenes, Nanotubes, Carbon Nanostruct., 27 [12] 684-90 (2017).
29 D. C. T. Nguyen, K.-Y. Cho, and W.-C. Oh, "New Synthesis of the Ternary Type $Bi_2WO_6-GO-TiO_2$ Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-Catalytic Effect," Appl. Chem. Eng., 28 705-13 (2017).
30 D. C. T. Nguyen, J.-H. Woo, K. Y. Cho, C.-H. Jung, W.-C. Oh, "Highly Efficient Visible Light Driven Photocatalytic Activities of the $LaCuS_2$-Graphene Composite-Decorated Ordered Mesoporous Silica," Sep. Purif. Technol., 205 11-21 (2018).   DOI
31 K. Ullah, S. Ye, L. Zhu, S. B. Jo, W. K. Jang, K. Y. Cho, and W.-C. Oh, "Noble Metal Doped Graphene Nanocomposites and its Study of Photocatalytic Hydrogen Evolution," Solid State Sci., 31 91-8 (2014).   DOI
32 K. Ullah, S. Ye, S.-B. Jo, L. Zhu, K.-Y. Cho, and W.-C. Oh, "Optical and Photocatalytic Properties of Novel Heterogeneous $PtSe_2-Graphene/TiO_2$ Nanocomposites Synthesized via Ultrasonic Assisted Techniques," Ultrason. Sonochem., 21 [5] 1849-1857 (2014).   DOI
33 T. Ghosh, J.-H. Lee, Z.-D. Meng, K. Ullah, C.-Y. Park, V. Nikam, and W.-C. Oh, "Graphene Oxide Based CdSe Photocatalysts: Synthesis, Characterization and Comparative Photocatalytic Efficiency of Rhodamine B and Industrial Dye," Mater. Res. Bull., 48 [3] 1268-74 (2013).   DOI
34 T Ghosh, K. Y. Cho, K. Ullah, V. Nikam, C. Y. Park, Z.-D. Meng, and W.-C. Oh, "High Photonic Effect of Organic Dye Degradation of Cd-Graphene-$TiO_2$ Particles," J. Ind. Eng. Chem., 19 [3] 797-805 (2013).   DOI
35 L. Zhu, M. Teo, P. C. Wong, K. C. Wong, I. Narita, F. Ernst, K. A. R. Mitchell, and S. A. Campbell, "Synthesis, Characterization of a $CoSe_2$ Catalyst for the Oxygen Reduction Reaction," Appl. Catal., A, 386 [1-2] 157-65 (2010).   DOI
36 L. Zhu, G. Trisha, C. Y. Park, Z. D. Meng, and W.-C. Oh, "Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-$TiO_2$ Composites Synthesized by an Ultrasonic-Aassisted Method," Chin. J. Catal., 33 [7-8] 1276-83 (2012).   DOI
37 W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, "New Insights into the Structure and Reduction of Graphite Oxide," Nat. Chem., 1 403-8 (2009).   DOI
38 H. J. Wang, F. Q. Sun, Y. Zhang, L. S. Li, H. Y. Chen, Q. S. Wu, and J. C. Yu, "Photochemical Growth of Nanoporous $SnO_2$ at the Air-Water Interface and its High Photocatalytic Activity," J. Mater. Chem., 20 [27] 5641-45 (2010).   DOI
39 O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, "High-Rate Solar Photocatalytic Conversion of $CO_2$ and Water Vapor to Hydrocarbon Fuels," Nano Lett., 9 [2] 731-37 (2009).   DOI
40 B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, "Photochemical and Photoelectrochemical Reduction of $CO_2$," Annu. Rev. Phys. Chem., 63 541-69 (2012).   DOI
41 S. Wang and X. C. Wang, "Photocatalytic $CO_2$ Reduction by CdS Promoted with a Zeolitic Imidazolate Framework," Appl Catal., B, 162 494-500 (2015).   DOI
42 J. C. S. Wu, H.-M. Lin, and C.-L. Lai, "Photo Reduction of $CO_2$ to Methanol Using Optical-Fiber Photoreactor," Appl. Catal., A, 296 [2] 194-200 (2005).   DOI
43 T. Inoue, A. Fujishima, S. Konishi, and K. Honda, "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277 637-38 (1979).   DOI
44 P. W. Huo, Z. Y. Lu, X. L. Liu, X. Gao, J. M. Pan, D. Wu, J. Ying, H. M. Li, and Y. S. Yan, "Preparation Molecular/Ions Imprinted Photocatalysts of $La^{3+}@POPD/TiO_2/Fly-Ash$ Cenospheres: Preferential Photodegradation of TCs Antibiotics," Chem. Eng. J., 198-199 73-80 (2012).   DOI
45 X. Nie, G. Y. Li, P. K. Wong, H. J. Zhao, and T. C. An, "Synthesis and Characterization of N-Doped Carbonaceous/$TiO_2$ Composite Photoanodes for Visible-Light Photoelectrocatalytic Inactivation of Escherichia Coli K-12," Catal. Today, 230 67-73 (2014).   DOI
46 Q. D. Truong, T.H. Le, J.-Y. Liu, C.-C. Chung, and Y.-C. Ling, "Synthesis of $TiO_2$ Nanoparticles Using Novel Titanium Oxalate Complex towards Visible Light-Driven Photocatalytic Reduction of $CO_2$ to $CH_3OH$," Appl. Catal., A, 437-438 28-35 (2012).   DOI
47 G. Williams, B. Seger, and P. V. Kamat, "$TiO_2$-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide," ACS Nano, 2 [7] 1487-91 (2008).   DOI
48 G. S. Li, D. Q. Zhang, and J. C. Yu, "Ordered Mesoporous $BiVO_4$ through Nanocasting: A Superior Visible Light-Driven Photocatalyst," Chem. Mater., 20 [12] 3983-92 (2008).   DOI
49 Y. Areerob, J. Y. Cho, W. K. Jang, and W. C. Oh, "Enhanced Sonocatalytic Degradation of Organic Dyes from Aqueous Solutions by Novel Synthesis of Mesoporous $Fe_3O_4-Graphene/ZnO@SiO_2$ Nanocomposites," Ultrason. Sonochem., 41 267-78 (2018).   DOI
50 I. V. Lightcap, T. H. Kosel, and P. V. Kamat, "Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide," Nano Lett., 10 [2] 577-83 (2010).   DOI
51 H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, and J. H. Li, "$P_{25}$-Graphene Composite as a High Performance Photocatalyst," ACS Nano, 4 [1] 380-86 (2010).   DOI
52 Y. H. Ng, A. Iwase, A. Kudo, and R. Amal, "Reducing Graphene Oxide on a Visible-Light $BiVO_4$ Photocatalyst for an Enhanced Photoelectrochemical Water Splitting," J. Phys. Chem. Lett., 1 [17] 2607-12 (2010).   DOI
53 Y. H. Ng, A. Iwase, N. J. Bell, A. Kudo, and R. Amal, "Semiconductor/Reduced Graphene Oxide Nanocomposites Derived from Photocatalytic Reactions," Catal. Today, 164 [1] 353-57 (2011).   DOI
54 S. Solomona, G.-K. Plattnerb, R. Knuttic, and P. Friedlingstein, "Irreversible Climate Change due to Carbon Dioxide Emissions," Proc. Natl. Acad. Sci. U. S. A., 106 [6] 1704-9 (2009).   DOI
55 W. N. Wang, W. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay, and P. Biswas, "Size and Structure Matter: Enhanced $CO_2$ Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on $TiO_2$ Single Crystals," J. Am. Chem. Soc., 134 [27] 11276 (2012).   DOI
56 B. Guo, Y. Geng, B. Franke, H. Hao, Y. Liu, and A. Chiu, "Uncovering China's Transport $CO_2$ Emission Patterns at the Regional Level," Energy Policy, 74 134-46 (2012).
57 B. C. O'Neill and M. Oppenheimer, "Dangerous Climate Impacts and the Kyoto Protocol," Science, 296 [5575] 1971-72 (2002).   DOI
58 D. Luthi, M. L. Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T. F. Stocker, "High-Resolution Carbon Dioxide Concentration Record 650,000-800,000 Years before Present," Nature, 453 379-82 (2008).   DOI
59 S. Kiatphuengporn, M. Chareonpanich, and J. Limtrakul, "Effect of Unimodal and Bimodal MCM-41 Mesoporous Silica Supports on Activity of Fe-Cu Catalysts for $CO_2$ Hydrogenation," Chem. Eng. J., 240 527-33 (2014).   DOI
60 H. T. Hu, X. B. Wang, F. M. Liu, J. C. Wang, and C. H. Xu, "Rapid Microwave-Assisted Synthesis of Graphene Nanosheets-Zinc Sulfide Nanocomposites: Optical and Photocatalytic Properties," Synth. Met., 161 [5-6] 404-10 (2011).   DOI
61 W. Donphaia, K. Faungnawakij, M. Chareonpanich, and J. Limtrakul, "Effect of Ni-CNTs/Mesocellular Silica Composite Catalysts on Carbon Dioxide Reforming of Methane," Appl. Catal., A, 475 16-26 (2014).   DOI
62 S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, "Photocatalytic Reduction of $CO_2$ on $TiO_2$ and Other Semiconductors," Angew. Chem., Int. Ed., 52 [29] 7372-408 (2013).   DOI
63 V. M. Dzhagan, I. Lokteva, M. Y. Valakh, and O. E. Raevska, "Spectral Features above LO Phonon Frequency in Resonant Raman Scattering Spectra of Small CdSe Nanoparticles," J. Appl. Phys., 106 [8] 084318 (2009).   DOI
64 K. John, D. T. Manolis, D. P. George, N. A. Mariza, S. T. Kostas, G. Soa, B. Kyriakos, K. Christos, O. Michael, and L. Alexis, "Highly Active Catalysts for the Photo Oxidation of Organic Compounds by Deposition of Fullerene onto the MCM-41 Surface," Appl. Catal., B, 117-118 36-48 (2012).   DOI
65 W. K. Ho and J. C. Yu, "Sonochemical Synthesis of Visible Light Photocatalytic Behavior of CdSe and $CdSe/TiO_2$ Nanoparticles," J. Mol. Catal. A: Chem., 247 [1-2] 268-74 (2006).   DOI
66 H. Lange, M. Artemyev, U. Woggon, and C. Thomsen, "Geometry Dependence of the Phonon Modes in CdSe Nanorods," Nanotechnology, 20 [4] 045705 (2009).   DOI
67 R. C. Wang, Y.-C. Chen, S.-J. Chen, and Y.-M. Chang, "Unusual Functionalization of Reduced Graphene Oxide for Excellent Chemical Surface Enhanced Raman Scattering by Coupling with ZnO," Carbon, 70 215-23 (2014).   DOI
68 D. Li, H. Haneda, S. Hishita, and N. Ohashi, "Visible-Light-Driven Nitrogen-Doped $TiO_2$ Photocatalysts: Effect of Nitrogen Precursors on Their Photocatalysis for Decomposition of Gas-Phase Organic Pollutant," Mater. Sci. Eng., B, 117 [1] 67-75 (2005).   DOI
69 S. Ameen, H. K. Seo, M. S. Akhtar, and H. S. Shin, "Novel Graphene/Polyaniline Nanocomposites and its Photocatalytic Activity toward the Degradation of Rose Bengal Dye," Chem. Eng. J., 210 220-28 (2012).   DOI
70 Z. Zafar, Z. H. Ni, X. Wu, Z. X. Shi, H. Y. Nan, J. Bai, and L. T. Sun, "Evolution of Raman Spectra in Nitrogen Doped Graphene," Carbon, 61 57-62 (2013).   DOI
71 X. Chen, S. Shen, L. Guo, and S. S. Mao, "Semiconductor-Based Photocatalytic Hydrogen Generation," Chem. Rev., 110 [11] 6503-70 (2010).   DOI
72 T. N. Lambert, C. A. Chavez, N. S. Bell, C. M. Washburn, D. R. Wheeler, and M. T. Brumbach, "Large Area Mosaic Films of Graphene-Titania: Self-Assembly at the Liquid-Air Interface and Photo-Responsive Behavior," Nanoscale, 3 [1] 188-91 (2011).   DOI
73 Y. P. Zhang and C. X. Pan, "$TiO_2$/Graphene Composite from Thermal Reaction of Graphene Oxide and its Photocatalytic Activity in Visible Light," J. Mater. Sci., 46 [8] 2622-26 (2011).   DOI
74 B. J. Li and H. Q. Cao, "ZnO@ Graphene Composite with Enhanced Performance for the Removal of Dye from Water," J. Mater. Chem., 21 3346-49 (2011).   DOI
75 T. Tachikawa, M. Fujitsuka, and T. Majima, "Mechanistic Insight into the $TiO_2$ Photocatalytic Reactions: Design of New Photocatalysts," J. Phys. Chem. C, 111 [14] 5259-75 (2007).   DOI
76 A. Dhakshinamoorthy, S. Navalon, A. Corma, and H. Garcia, "Photocatalytic $CO_2$ Reduction by $TiO_2$ and Related Titanium Containing Solids," Energy Environ. Sci., 5 [11] 9217-33 (2012).   DOI