• Title/Summary/Keyword: photovoltaic characteristics

Search Result 732, Processing Time 0.031 seconds

The Optimal Design of High Voltage Non Punch Through IGBT and Field Stop IGBT (고전압 Non Punch Through IGBT 및 Field Stop IGBT 최적화 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.214-217
    • /
    • 2017
  • An IGBT (insulated gate bipolar transistor) device has an excellent current-conducting capability. It has been widely employed as a switching device to use in power supplies, converters, solar inverters, and household appliances or the like, designed to handle high power. The aim with IGBT is to meet the requirements for use in ideal power semiconductor devices with a high breakdown voltage, an on-state voltage drop, a high switching speed, and high reliability for power-device applications. In general, the concentration of the drift region decreases when the breakdown voltage increases, but the on-resistance and other characteristics should be reduced to improve the breakdown voltage and on-state voltage drop characteristics by optimizing the design and structure changes. In this paper, using the T-CAD, we designed the NPT-IGBT (non punch-through IGBT) and FS-IGBT (field stop IGBT) and analyzed the electrical characteristics of those devices. Our analysis of the electrical characteristics showed that the FS-IGBT was superior to the NPT-IGBT in terms of the on-state voltage drop.

Study on Chip on Chip Technology for Minimizing LED Driver ICs (LED Driver ICs칩의 소형화를 위한 Chip on Chip 기술에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.131-134
    • /
    • 2016
  • This research was analyzed thermal characteristics that was appointed disadvantage when smart LED driver ICs was packaged and we applied extracted thermal characteristics for optimal layout design. We confirmed reliability of smart LED driver ICs package without additional heat sink. If the package is not heat sink, we are possible to minimize package. For extracting thermal loss due to overshoot current, we increased driver current by two and three times. As a result of experiment, we obtained 22 mW and 49.5 mW thermal loss. And we obtained optimal data of 350 mA driver current. It is important to distance between power MOSFET and driver ICs. If thhe distance was increased, the temperature of package was decreased. And so we obtained optimal data of 3.7 mm distance between power MOSFET and driver ICs. Finally, we fabricated real package and we analyzed the electrical characteristics. We obtained constant 35 V output voltage and 80% efficiency.

A Study on the Output Characteristics According to the Cell Electrode Pattern for a Large-area Double-sided Shingled Module (대면적 양면형 슁글드 모듈을 위한 셀 전극 패턴에 따른 출력 특성에 관한 연구)

  • Seungah, Ur;Juhwi, Kim;Jaehyeong, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2022
  • Double-sided photovoltaic (PV) modules have received significant attention in recent years as a technology that can achieve higher annual energy production rates than single-sided modules. The shingled technology is a promising method for manufacturing high-density and high-power modules. These modules are divided by laser and joined with electrically conductive adhesives. The output efficiency of the divided cells depends on the division pattern and the electrode pattern, making it important to understand the output characteristics. In this study, the output characteristics of large-area double-sided light-receiving shingled cells with different split patterns and electrode patterns were investigated. The M6 size, with 6 divisions in the electrode pattern, had the highest efficiency when using 142 front fingers and 146 rear fingers. The M10 size, with 7 divisions, had the highest output when using 150 fingers equally in the front and rear. The M12 size, also with 7 divisions, showed the highest output characteristics when using 192 front fingers and 208 rear fingers.

A Study on the Operating Characteristics for the Grid Interconnected PV System with BESS (BESS를 적용한 계통연계형 PV시스템의 운전특성에 관한 연구)

  • Lee, Kang-Yeon;Jeong, Byeong-Ho;Cho, Geum-Bae;Baek, Hyung-Lae;Jung, Hae-Duck
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.69-77
    • /
    • 2006
  • Photovoltaic is an attractive technology to remote power applications, because of its reliability, low maintenance, and zero fuel requirements. In this paper represents residential PV system based on BESS(battery energy storage system) for managing the electric power, a pattern of daily operation considering the load characteristics of the house, the generation characteristics of PV power, and utility power leveling. For apply to control algorithm, we consider the load on monthly power consumption trend and daily usage pattern. As for the control of the proposed system, to increase the conversion efficiency of the PV power, bidirectional converter is used for MPPT and SPWM inverter. An experimental system is implemented, and some experimental results are provided to demonstrate the effectiveness of the proposed system.

Effects of Boron Doping on Properties of CdS Films and Characteristics of CdS/CdTe Solar Cells (보론 도핑에 따른 CdS 박막 및 CdS/CdTe 태양전지 특성)

  • Lee, Jae-Hyeong;Lee, Ho-Yeol;Park, Yong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.563-569
    • /
    • 1999
  • Boron doped CdS films were prepared by chemical bath deposition using boric acid$(H_3BO_3)$ as donor dopant source, and their electrical, optical properties were investigated as a function of doping concentration. In addition, effects of boron doping of CdS films on characteristics of CdS/CdTe solar cells were investigated. Boron doping highly decreased the resistivity and slightly increased optical band gap of CdS films. The lowest value of resistivity was $2 \Omega-cm \;at\; H_3BO_3/Cd(Ac)_2$ molar ratio of 0.1. For the molar ratio more than 0.1, however, the resistivity increased because of decreasing carrier concentration and mobility and showed similar value for undoped films. The photovoltaic characteristics of CdS/CdTe solar cells with boron doped CdS film improved due to the decrease of the conduction band-Fermi level energy gap of CdS films and the series resistance of solar cell.

  • PDF

A Study on the Electrical Characteristics with Design Parameters in 1,200 V Trench Gate Field Stop IGBT (1,200 V급 Trench Gate Field Stop IGBT 소자의 전기적 특성 향상 방안에 관한 연구)

  • Geum, Jong-Min;Jung, Eun-Sik;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.253-260
    • /
    • 2012
  • IGBT (insulated gate bipolar transistor) have received wide attention because of their high current conduction and good switching characteristics. To reduce the power loss of IGBT, the on state voltage drop should be lowered and the switching time should be shorted. However, there is Trade-off between the breakdown voltage and the on state voltage drop. To achieving good electrical characteristics, field stop IGBT (FS IGBT) is proposed. In this paper, 1,200 V planar gate non punch-through IGBT (planar gate NPT IGBT), planar gate FS IGBT and trench gate FS IGBT is designed and optimized. The simulation results are compared with each three structures. In results, we optain optimal design parameters and confirm excellence of trench gate FS IGBT. Experimental result by using medici, shows 40% improvement of on state voltage drop.

Classification of Grid Connected Transformerless PV Inverters with a Focus on the Leakage Current Characteristics and Extension of Topology Families

  • Ozkan, Ziya;Hava, Ahmet M.
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.256-267
    • /
    • 2015
  • Grid-connected transformerless photovoltaic (PV) inverters (TPVIs) are increasingly dominating the market due to their higher efficiency, lower cost, lighter weight, and reduced size when compared to their transformer based counterparts. However, due to the lack of galvanic isolation in the low voltage grid interconnections of these inverters, the PV systems become vulnerable to leakage currents flowing through the grounded star point of the distribution transformer, the earth, and the distributed parasitic capacitance of the PV modules. These leakage currents are prohibitive, since they constitute an issue for safety, reliability, protection coordination, electromagnetic compatibility, and module lifetime. This paper investigates a wide range of multi-kW range power rating TPVI topologies and classifies them in terms of their leakage current attributes. This systematic classification places most topologies under a small number of classes with basic leakage current attributes. Thus, understanding and evaluating these topologies becomes an easy task. In addition, based on these observations, new topologies with reduced leakage current characteristics are proposed in this paper. Furthermore, the important efficiency and cost determining characteristics of converters are studied to allow design engineers to include cost and efficiency as deciding factors in selecting a converter topology for PV applications.

A Study on the Material Characteristics of the NiO/ZnO Ultraviolet Sensor Based on Solution Process (용액 공정 기반 NiO/ZnO계 자외선 센서용 재료 특성 연구)

  • Moon, Seong-Cheol;Lee, Ji-Seon;No, Kyeong-Jae;Yang, Seong-Ju;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.508-513
    • /
    • 2017
  • Ultraviolet (UV) photodetectors are used in various industries and fields of research, including optical communication, flame sensing, missile plume detection, astronomical studies, biological sensors, and environmental research. However, general UV detectors that employ Schottky junction diodes and p-n junctions have high fabrication cost and low quantum efficiency. In this study, we investigated the characteristics of materials used to manufacture UV photodetectors in a low-cost solution process that requires easy fabrication of flexible substrates. We fabricated p-type NiO and n-type ZnO substrates with wide band gap by the sol-gel method and compared the characteristics of substrates prepared under different spin-coating and heat-treatment conditions.

A Study on Optimal Operation of Microgrid Considering the Probabilistic Characteristics of Renewable Energy Generation and Emissions Trading Scheme (신재생에너지발전의 확률적인 특성과 탄소배출권을 고려한 마이크로그리드 최적 운용)

  • Kim, Ji-Hoon;Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • A microgrid can play a significant role for enlargement of renewable energy sources and emission reduction because it is a network of small, distributed electrical power generators operated as a collective unit. In this paper, an application of optimization method to economical operation of a microgrid is studied. The microgrid to be studied here is composed of distributed generation system(DGS), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems, wind power systems. Both of thermal loads and electrical loads are included here as loads. Also the emissions trading scheme to be applied in near future, the cost of unit start-up and the operational characteristics of battery systems are considered as well as the probabilistic characteristics of the renewable energy generation and load. A mathematical equation for optimal operation of this system is modeled based on the mixed integer programming. It is shown that this optimization methodology can be effectively used for economical operation of a microgrid by the case studies.

Enhancement of On-Resistance Characteristics Using Charge Balance Analysis Modulation in a Trench Filling Super Junction MOSFET

  • Geum, Jongmin;Jung, Eun Sik;Kim, Yong Tae;Kang, Ey Goo;Sung, Man Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.843-847
    • /
    • 2014
  • In Super Junction (SJ) MOSFETs, charge balance is the most important issue of the SJ fabrication process. In order to achieve the best electrical characteristics, such as breakdown voltage and on-resistance, the N-type and P-type drift regions must be fully depleted when the drain bias approaches the breakdown voltage, which is known as the charge balance condition. In conventional charge balance analysis, based on multi-epi process SJ MOSFETs, analytical model has only N, P pillar width and doping concentration parameter. But applying a conventional charge balance principle to trench filling process, easier than Multi-epi process, is impossible due to the missing of the trench angle parameter. To achieve much more superior characteristics of on-resistance in trench filling SJ MOFET, the appropriate trench angle is necessary. So in this paper, modulated charge balance analysis is proposed, in which a trench angle parameter is added. The proposed method is validated using the TCAD simulation tool.