• Title/Summary/Keyword: photovoltaic characteristics

Search Result 732, Processing Time 0.034 seconds

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

A study on the performance of various BIPV modules applied in a real building demonstration (BIPV시스템의 건물적용 실증에 대한 구성요소별 발전성능 분석)

  • Lee, Sang-Moon;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.53-63
    • /
    • 2016
  • Building Integrated Photovoltaic (BIPV) is one of the best ways to generate electric power using the solar energy, which is clean and inexhaustible energy resources. The most of BIPV modules have the form of GtoG (Glass to Glass) photovoltaic in building applications. Degradation leading to failure in photovoltaic modules is very important factor in BIPV modules. This paper analyzed the performance of various BIPV modules through outdoor exposure tests. Performance of three BIPV modules(c-Si type, a-Si type and DSSC type) with three installation angles influenced by sun light, outdoor temperature, and wind velocity was monitored and analyzed. As a result, c-Si type BIPV module outperforms other BIPV modules(a-Si type). In terms of power efficiency of the module, the installed angle of $45^{\circ}$ is better than others(90 degree, 0 degree). In addition, more realistic data of various BIPV system performance could be available through the field test and integrated building test. In this study, relationship of the BIPV system is identified module's installation angle, power generation, architectural performance, etc.

A Detail Survey of Horizontal Global Radiation and Hours of Bright Sunshine for the Installation of Solar Photovoltaic System in Korea (국내 태양광시스템 설치를 위한 수평면 전일사량과 일조시간 정밀조사)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.48-56
    • /
    • 2011
  • Since the horizontal global radiation and hours of bright sunshine are a main factor for designing photovoltaic system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and hours of bright sunshine in Korea. The data utilized in the investigation consist of horizontal global radiation and hours of bright sunshine collected for 28years(1982.12~2009.12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is3.61kWh/m2 and the annual-average daily hours of bright sunshineis 5.1 Hrs in Korea. We also constructed the contour map of hours of horizontal global radiation and hours of bright sunshine in Korea by interpolating actually measured data across the country.

A Study for Design and Operational Features of Grid-Connected 30kW PVIB (30kW PVIB의 설계 및 구동특성에 관한 연구)

  • Park, Se-Joon;Yoon, Jeong-Phil;Choi, Hong-Jun;Shin, Yeong-Shik;Cha, In-Su;Kim, Dong-Mook;Lim, Jung-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.80-85
    • /
    • 2008
  • A PVIB(Photovoltaic in Building) system is united by a constituent outer covering and can expect dual effects that reduce expenses for the establishment of a PV system. It is a profitable technology because it does not need a building as it is a stand alone PV system. This paper presents design, operational features analysis, and PCS(Power Conditioning System) of grid-connected 30kW PVIB set up on the library of Dongshin University. For a sustainable photovoltaic system in this area, the data of the PVIB system are collected and analyzed by monitoring system using LabView. PCS of the grid-connected PVIB system, also, is designed for optimal operation with characteristics suggested in this paper.

  • PDF

Compensation of Unbalanced Neutral Voltage for Grid-Connected 3-Phase 3-Level T-type Photovoltaic PCS Using Offset Voltage (오프셋 전압을 이용한 계통 연계형 3상 3레벨 T-type 태양광 PCS의 중성점 전압 불평형 보상)

  • Park, Kwan-Nam;Choy, Ick;Choi, Ju-Yeop;Lee, Young-Kwoun
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.1-12
    • /
    • 2017
  • The DC link of Grid-Connected 3-Phase 3-Level T-type Photovoltaic PCS (PV-PCS) consists of two series connected capacitors for using their neutral voltage. The mismatch between two capacitor characteristics and transient states happened in load change cause the imbalance of neutral voltage. As a result, PV-PCS performance is degraded and the system becomes unstable. In this paper, a mathematical model for analyzing the imbalance of neutral voltage is derived and a compensation method using offset voltage is proposed, where offset voltage adjusts the applying time of P-type and N-type small vectors. The validity of the proposed methods is verified by simulation and experiment.

Modeling of Photovoltaic Power Systems using Clustering Algorithm and Modular Networks (군집화 알고리즘 및 모듈라 네트워크를 이용한 태양광 발전 시스템 모델링)

  • Lee, Chang-Sung;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.108-113
    • /
    • 2016
  • The real-world problems usually show nonlinear and multi-variate characteristics, so it is difficult to establish concrete mathematical models for them. Thus, it is common to practice data-driven modeling techniques in these cases. Among them, most widely adopted techniques are regression model and intelligent model such as neural networks. Regression model has drawback showing lower performance when much non-linearity exists between input and output data. Intelligent model has been shown its superiority to the linear model due to ability capable of effectively estimate desired output in cases of both linear and nonlinear problem. This paper proposes modeling method of daily photovoltaic power systems using ELM(Extreme Learning Machine) based modular networks. The proposed method uses sub-model by fuzzy clustering rather than using a single model. Each sub-model is implemented by ELM. To show the effectiveness of the proposed method, we performed various experiments by dataset acquired during 2014 in real-plant.

Research about most suitable control of small scale system link type photovoltaic system (소규모 계통연계형 태양광 시스템의 최적제어에 대한 연구)

  • Hwang L. H.;Jang E. S.;Nam W. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.238-243
    • /
    • 2003
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuated on the variation of insolation, temperature and load. The output power of solar cell is DC, therefore it is necessary to install an inverter among electric power converts. The inverter have to supply a sinusoidal current and voltage to the load and the interactive utility line. In the paper, the proposes a photovoltaic system designed with a step up chopper and single phase PWM voltage source inverter. Synchronous signal and control signal was processed by microprocessor for stable modulation. The step up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature because solar cell has typical dropping character. The single phase PWM voltage source inverter consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be developed continuously by connecting with the source of electric power, from 10 to $20\%$. The single phase PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. The inverter supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

  • PDF

The Improved Characteristics of the Stand-alone PV System by the Independent Battery Control Method (밧데리 개별 제어 방식에 의한 소규모 독립형 태양광 발전 시스템의 특성 개선)

  • 강신영;이양규;김광헌
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.482-489
    • /
    • 2002
  • This paper studies the stand-alone photovoltaic system for the solar lighting lamp. The solar lighting lamp has PV modules, batteries, and charge & discharge system. The charge efficiency is improved for the control of each battery which is divided the charge from the discharge to change the structure of existing solar lighting lamp charge & discharge system. so, the charge and discharge times are reduced of 50% and the depth of discharge control can be controlled in the discharge cut off voltage. It can be effective of the battery use. If a battery is out of order, this system can be executed for a regular period. So we saved the repair cost and developed of system's stabilization. It Is possible to make economical effects to apply for solar lighting lamp used photovoltaic system.

Design and Control of Novel Topology for Photovoltaic DC/DC Converter with High Efficiency under Wide Load Ranges

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.300-307
    • /
    • 2009
  • In this paper, design and control is proposed for a four input-series-output-series-connected ZVS full bridge converter for the photovoltaic power conditioning system (PCS). The novel topology for a photovoltaic (PV) DC/DC converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing PV module characteristics is proposed. The control scheme, including an input voltage controller is proposed to achieve equal sharing of the input voltage as well output voltages by a four series connected module. Design methods for ZVS power stage are also introduced. The total PV system is implemented for a 250-kW PV power conditioning system (PCS). This system has only three DC/DC converters with a 25-kW power rating and uses only one-third of the total PV PCS power. The 25-kW prototype PV DC/DC converter is introduced to verify experimentally the proposed topology. In addition, an experimental result shows that the proposed topology exhibits good performance.

The Doping Profile Modeling of Crystalline Silicon Solar Cell with PC1D simulation (PC1D 시뮬레이션을 이용한 결정질 실리콘 태양전지의 도핑 프로파일 모델링)

  • Choi, Sung-Jin;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.149-153
    • /
    • 2011
  • The PC1D is widely used for modeling the properties of crystalline silicon solar cell. Optimized doping profile in crystalline silicon solar cell fabrication is necessary to obtain high conversion efficiency. Doping profile in the forms of a uniform, gaussian, exponential and erfc function can be simulated using the PC1D program. In this paper, the doping profiles including junction depth, dopant concentration on surface and the form of doping profile (gaussian, gaussian+erfc function) were changed to study its effect on electrical properties of solar cell. As decreasing junction depth and doping concentration on surface, electrical properties of solar cell were improved. The characteristics for the solar cells with doping profile using the combination of gaussian and erfc function showed better open-circuit voltage, short-circuit current and conversion efficiency.

  • PDF