• Title/Summary/Keyword: photovoltaic characteristics

Search Result 732, Processing Time 0.044 seconds

Relation Between Wire Sawing-damage and Characteristics of Single Crystalline Silicon Solar-cells (와이어 소잉 데미지 층이 단결정 실리콘 태양전지 셀 특성에 미치는 영향)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.27-30
    • /
    • 2018
  • The dependency of the electrical characteristics of silicon solar-cells on the depth of damaged layer induced by wire-sawing process was investigated. To compare cell efficiency with residual sawing damage, silicon solar-cells were fabricated by using as-sawn wafers having different depth of saw damage without any damaged etching process. The damaged layer induced by wire-sawing process in silicon bulk intensely influenced the value of fill factor on solar cells, degrading fill factor to 57.20%. In addition, the photovoltaic characteristics of solar cells applying texturing process shows that although the initial depth of saw-damage induced by wire-sawing process was different, the value of short-circuit current, fill-factor, and power-conversion-efficiency have an almost same, showing ~17.4% of cell efficiency. It indicated that the degradation of solar-cell efficiency induced by wire-sawing process could be prevented by eliminating all damaged layer through sufficient pyramid-surface texturing process.

A Study on the Instrumentation and Valuation of Photovoltaic Energy Utilization System (태양광발전 에너지이용시스템의 계측과 평가에 관한 연구)

  • Chung, Heun-Sang;Baek, Hyung-Lae;Cho, Geum-Bae;Kim, Dong-Hwi;Kim, Dae-Gon;You, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.496-499
    • /
    • 1991
  • Photovoltaic system has very low energy conversion efficiency and the output characteristics of solar cell is varied by the Insolation quantity and the temperature. In order to improve the efficiency of photovoltaic system, the energy which has got from solar cell must be use maximum. In this paper, it was stimultaneous executed both MPPT control and instrumentation in order that the operating point of solar cell is located maximum power point, using the PWM inverter and micro-computer, which is for the purpose of acquiring maximum power from the solar cell. As a result, maximum power point tracking had carried out and the efficiency of photovoltaic system improved, even if insolation quantity and the temperature are varied.

  • PDF

A study on the Characteristics of the old modules (오래된 모듈의 특성에 관한 연구)

  • Hong, Sa-Keun;Choi, Hong-Kyoo;Yum, Sung-Bae;Song, Young-Joo;Choi, Young-Jun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.351-354
    • /
    • 2009
  • The solar photovoltaic power generator is more important than other renewable energy. Because The solar photovoltaic power generator has been commercialized. So the solar photovoltaic power plants have been constructed. The photovoltaic module lifetime is estimated about 20 year. But The results can not be trusted Because It did not test in the korea. In this paper, We test the maximum power of three modules used 23 years.

  • PDF

A Study on the Operating Characteristics for Utility interactive 50KW Photovoltaic System (50KW 계통연계형 태양광발전시스템 운전특성에 관한 연구)

  • Lee, K.Y.;Chung, B.H.;Choi, M.H.;Lim, B.O.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.243-246
    • /
    • 2002
  • This paper presents experimental operation with utility interactive 50kw photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

A characteristics on the generating Power of a 3-Phase Photovoltaic Power system for grid-connection (3상 계통연계형 태양광 발전시스템의 출력특성)

  • Ahn, Kyo-Sang;Lim, Hee-Chun;Hwang, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1171-1173
    • /
    • 2000
  • This paper was analyzed the high-frequency harmonics, power conversion rate, results of the system's monitor, and measuring data of the system power output of a 3-phase photovoltaic power system for grid-connection. The photovoltaic power system consists of a 3-phase inverter array, and data acquisition system. The result of an analyzing data of the 50 kW class grid-connected photovoltaic system showed the stable behavior in utility-interactive operation.

  • PDF

Investigation of Structural and Optical Characteristics of In2Se3 Thin Films Fabricated by Thermal Annealing (열처리로 제조된 In2Se3 박막의 구조 및 광학적 특성 연구)

  • Park, Jae-Hyoug;Kim, Dae-Young;Park, Gwang-Hun;Han, Myung-Soo;Kim, Hyo-Jin;Shin, Jae-Cheol;Ha, Jun-Seok;Kim, Kwang-Bok;Ko, Hang-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • We report investigation of structural and optical characteristics of $In_2Se_3$ thin films fabricated by thermal annealing process. Indium (In) is deposited on substrates by sputtering methods and $In_2Se_3$ thin films are fabricated by thermal annealing it with selenium vapor. The annealing temperature was changed from $150^{\circ}C$ to $400^{\circ}C$. We observe formation and phase changes of $In_2Se_3$ thin films with increase of annealing temperature. Conglomeration of In is observed at low annealing temperature (${\leq}150^{\circ}C$). $In_2Se_3$ phases are started to form at $200^{\circ}C$ and ${\gamma}-In_2Se_3$ phase form at $350^{\circ}C$. High-quality ${\gamma}-In_2Se_3$ thin film with wurtzite structure is obtained at $400^{\circ}C$ of annealing temperature. Furthermore, we confirm that band gaps of $In_2Se_3$ thin films are increased according to increase of annealing temperature. Optical band gap of high-quality ${\gamma}-In_2Se_3$ is found to be 1.796eV.

Chemical Mechanical Polishing Characteristics of CdTe Thin Films for Application to Large-area Thin Film Solar Cell (대면적 박막 태양전지 적용을 위한 CdTe 박막의 화학적기계적연마 공정 특성)

  • Yang, Jung-Tae;Shin, Sang-Hun;Lee, Woo-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1146-1150
    • /
    • 2009
  • Cadmium telluride (CdTe) is one of the most attractive photovoltaic materials due to its low cost, high efficiency and stable performance in physical, optical and electronic properties. Few researches on the influences of uniform surface on the photovoltaic characteristics in large-area CdTe solar cell were not reported. As the preceding study of the effects of thickness-uniformity on the photovoltaic characteristics for the large-area CdTe thin film solar cell, chemical mechanical polishing (CMP) process was investigated for an enhancement of thickness-uniformity. Removal rate of CdTe thin film was 3160 nm/min of the maximum value at the 200 $gf/cm^2$ of down force (pressure) and 60 rpm of table speed (velocity). The removal rate of CdTe thin film was more affected by the down force than the table speed which is the two main factors directly influencing on the removal rate in CMP process. RMS roughness and peak-to-valley roughness of CdTe thin film after CMP process were improved to 96.68% and 85.55%, respectively. The optimum process condition was estimated by 100 $gf/cm^2$ of down force and 60 rpm of table speed with the consideration of good removal uniformity about 5.0% as well as excellent surface roughness for the large-area CdTe solar cell.

A Study on generation characteristics of building integrated Photovoltaic system (건물일체형 태양광발전 시스템의 발전성능 분석)

  • Park, Jae-Wan;Shin, U-Cheul;Kim, Dae-Gon;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.

Optimization of photovoltaic thermal (PV/T) hybrid collectors by genetic algorithm in Iran's residential areas

  • Ehyaei, M.A.;Farshin, Behzad
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.31-55
    • /
    • 2017
  • In the present study, PV/T collector was modeled via analysis of governing equations and physics of the problem. Specifications of solar radiation were computed based on geographical characteristics of the location and the corresponding time. Temperature of the collector plate was calculated as a function of time using the energy equations and temperature behavior of the photovoltaic cell was incorporated in the model with the aid of curve fitting. Subsequently, operational range for reaching to maximal efficiency was studied using Genetic Algorithm (GA) technique. Optimization was performed by defining an objective function based on equivalent value of electrical and thermal energies. Optimal values for equipment components were determined. The optimal value of water flow rate was approximately 1 gallon per minute (gpm). The collector angle was around 50 degrees, respectively. By selecting the optimal values of parameters, efficiency of photovoltaic collector was improved about 17% at initial moments of collector operation. Efficiency increase was around 5% at steady condition. It was demonstrated that utilization of photovoltaic collector can improve efficiency of solar energy-based systems.

Prediction and Accuracy Analysis of Photovoltaic Module Temperature based on Predictive Models in Summer (예측모델에 따른 태양광발전시스템의 하절기 모듈온도 예측 및 정확도 분석)

  • Lee, Yea-Ji;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Climate change and environmental pollution are becoming serious due to the use of fossil energy. For this reason, renewable energy systems are increasing, especially photovoltaic systems being more popular. The photovoltaic system has characteristics that are affected by ambient weather conditions such as insolation, outside temperature, wind speed. Particularly, it has been confirmed that the performance of the photovoltaic system decreases as the module temperature increases. In order to grasp the influence of the module temperature in advance, several researchers have proposed the prediction models on the module temperature. In this paper, we predicted the module temperature using the aforementioned prediction model on the basis of the weather conditions in Incheon, South Korea during July and August. The influence of weather conditions (i.e. insolation, outside temperature, and wind speed) on the accuracy of the prediction models was also evaluated using the standard statistical metrics such as RMSE, MAD, and MAPE. The results show that the prediction accuracy is reduced by 3.9 times and 1.9 times as the insolation and outside temperature increased respectively. On the other hand, the accuracy increased by 6.3 times as the wind speed increased.