• 제목/요약/키워드: photonic device

검색결과 87건 처리시간 0.024초

High System Performance with Plasmonic Waveguides and Functional Devices

  • Kwong, Wing-Ying
    • ETRI Journal
    • /
    • 제32권2호
    • /
    • pp.319-326
    • /
    • 2010
  • Photonics offers a solution to data communication between logic devices in computing systems; however, the integration of photonic components into electronic chips is rather limited due to their size incompatibility. Dimensions of photonic components are therefore being forced to be scaled down dramatically to achieve a much higher system performance. To integrate these nano-photonic components, surface plasmon-polaritons and/or energy transfer mechanisms are used to form plasmonic chips. In this paper, the operating principle of plasmonic waveguide devices is reviewed within the mid-infrared spectral region at the 2 ${\mu}m$ to 5 ${\mu}m$ range, including lossless signal propagation by introducing gain. Experimental results demonstrate that these plasmonic devices, of sizes approximately half of the operating free-space wavelengths, require less gain to achieve lossless propagation. Through optimization of device performance by means of methods such as the use of new plasmonic waveguide materials that exhibit a much lower minimal loss value, these plasmonic devices can significantly impact electronic systems used in data communications, signal processing, and sensors industries.

Spectral-shape-controllable Chirped Fiber Bragg Grating with a Photomechanical Microactuator: Simulation and Experiment

  • Moon, Jong-Ju;Ko, Youngmin;Park, Su-Jeong;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.477-482
    • /
    • 2020
  • Recently, one of the authors has been reported an optically tunable fiber Bragg grating (FBG) with a photomechanical polymer. It was based on a typical FBG with a downsized diameter of 60 ㎛, coated with azobenzene-containing polymer material. Azobenzene is a well-known reversibly photomechanical stretchable material under ultraviolet (UV) light. The small part of the functional-coating region on the FBG absorbed UV light, which pulled the UV-exposed part of the grating. It was selectable as tunable FBG or tunable chirped FBG, by adjusting the position of UV exposure on the grating. As proof of concept for the tunable FBG device, the characteristics just including UV-induced center-wavelength shift and spectral-width changes of the device were reported. In this paper, we report for the first time that the microactuator makes it possible to control the spectral shape of the FBG reflection, according to the specifications (shape and intensity) of the UV beam that reaches the FBG coated with the azobenzene polymer. In addition, we provide the group-delay profiles for the chirped FBG, so that the sign of its dispersion (normal or anomalous) can be tailored by simply selecting the moving direction of the UV light's displacement in the experiment.

이차전지로 구동하기 위한 다른 발진 특성을 나타내는 조명용 광양자테 소자 개발 (Development of Photonic Quantum Ring Device with Different Oscillation Characteristics for Driving with Secondary Battery)

  • 김경보;이종필;김무진
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.341-349
    • /
    • 2021
  • 최근 조명 산업이 중요한 분야로 인식되면서 PQR (Photonic Quantum Ring) 소자는 LED(Light Emitting Diode)를 대체할 수 있는 차세대 광원이 될 전망이다. 본 연구에서는 기존 연구와 유사한 결과를 검증하고, 소자의 광특성을 분석하기 위해 광섬유가 연결된 스테이지에 x, y, z 좌표를 입력하면 자동으로 이동하며, 또한, 소자에 광섬유를 근접시키는 NSOM (Near field scanning optical microscopy) 장치를 추가한 측정 시스템을 이용하여 소자의 광특성 실험과 공진 및 어레이 소자의 광특성 시뮬레이션을 통해 조명용 소자로 가능성을 검증하고자 하였다. 이를 위해 메사와 홀 형태가 동시에 존재하는 메사 직경 40㎛, 홀 직경 3㎛의 소자를 제작하여 소자의 근접장으로 PQR 소자는 ㎂에서 동작하며, 메사와 홀 소자는 서로 독립적으로 구동됨을 관찰하였다. 위치에 따른 소자의 광파장 스펙트럼을 측정하여 메사와 홀 소자에 의한 커플링 현상을 처음으로 확인하였다.

Novel electrode architecture for transparent organic thin-film transistors

  • Chen, Fang-Chung;Chen, Tung-Hsien;Lin, Yung-Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.194-197
    • /
    • 2006
  • One novel electrode-architecture has been adapted to fabricate transparent OTFTs. The device has more than 70% transmittance, yet reminds high performance. Furthermore, we also use transfer line method to prove that the device performance enhancement indeed contributes from the reduction of the contact resistances. It is anticipated that the transparent OTFTs would be very suitable to be the driving circuits for liquid crystal displays (LCDs).

  • PDF

Integration of an Optical Waveguide Isolator by Wafer Direct Bonding

  • Roh J. W.;Yang J. S.;Ok S. H.;Choi U. K.;Lee S.;Lee W. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2004년도 동계학술연구발표회 논문개요집
    • /
    • pp.175-176
    • /
    • 2004
  • An integrated waveguide optical isolator by wafer direct bonding has been studied. The isolation ratio was found to be 2.9dB in our device. We found that wafer direct bonding between the InP and GGG is effective for the integration of a waveguide optical isolator.

  • PDF

습식 식각 공정을 이용하여 제작된 광양자테 소자의 특성 분석 (Characterization of photonic quantum ring devices manufactured using wet etching process)

  • 김경보;이종필;김무진
    • 융합정보논문지
    • /
    • 제10권6호
    • /
    • pp.28-34
    • /
    • 2020
  • 본 논문에서는 VCSEL (Vertical Cavity Surface Emitting Laser) 레이저를 만드는 구조와 유사한 GaAs 웨이퍼상에 MOCVD (Metal Organic Chemical Vapor Deposition) 장비로 GaAs와 AlGaAs 에피층을 형성시킨 구조를 사용한다. 3차원 공진현상에 의해 자연 발생되는 광양자테 (PQR: Photonic Quantum Ring) 소자를 건식 식각 방법인 CAIBE (Chemically Assisted Ion Beam Etching) 기술로 제작하였지만, 진공 분위기에서 진행해야 하는 문제점 때문에 저가격으로 쉽게 소자를 제작할 수 있는 방법이 연구되었고, 그 결과 인산, 과산화수소, 메탄올이 혼합된 용액의 습식식각 기술로 가능성을 확인하였으며, 이 방법을 적용하여 소자를 제작한 내용에 대해 논한다. 또한, 제작된 광소자의 스펙트럼을 측정하였고, 이 결과들을 이론적으로 해석하여 얻은 파장값과 비교한다. 광양자테 소자는 3차원 형상으로 세포를 모델링하거나, 디스플레이 분야로의 응용이 가능할 것으로 기대한다.

평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구 (A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor)

  • 김준형;이종일;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제19권3호
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Fabrication and Characterization of Electro-photonic Performance of Nanopatterned Organic Optoelectronics

  • 닐리쉬;한지영;권현근;이규태;고두현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.134.2-134.2
    • /
    • 2014
  • Photonic crystal solar cells have the potential for addressing the disparate length scales in polymer photovoltaic materials, thereby confronting the major challenge in solar cell technology: efficiency. One must achieve simultaneously an efficient absorption of photons with effective carrier extraction. Unfortunately the two processes have opposing requirements. Efficient absorption of light calls for thicker PV active layers whereas carrier transport always benefits from thinner ones, and this dichotomy is at the heart of an efficiency/cost conundrum that has kept solar energy expensive relative to fossil fuels. This dichotomy persists over the entire solar spectrum but increasingly so near a semiconductor's band edge where absorption is weak. We report a 2-D, photonic crystal morphology that enhances the efficiency of organic photovoltaic cells relative to conventional planar cells. The morphology is developed by patterning an organic photoactive bulk heterojunction blend of Poly(3-(2-methyl-2-hexylcarboxylate) thiophene-co-thiophene) and PCBM via PRINT, a nano-embossing method that lends itself to large area fabrication of nanostructures. The photonic crystal cell morphology increases photocurrents generally, and particularly through the excitation of resonant modes near the band edge of the organic PV material. The device performance of the photonic crystal cell showed a nearly doubled increase in efficiency relative to conventional planar cell designs. Photonic crystals can also enhance performance of other optoelectronic devices including organic laser.

  • PDF

Proposal and Characterization of Ring Resonator with Sharp U-Turns Using an SOI-Based Photonic Crystal Waveguide

  • Omura, Yasuhisa;Iida, Yukio;Urakawa, Fumio;Ogawa, Yoshifumi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권2호
    • /
    • pp.102-109
    • /
    • 2007
  • We propose and experimentally demonstrate a ring resonator with sharp U-turns fabricated on a silicon-on-insulator (SOI) substrate; the resonator was designed as a key part of an optical, dynamic data storage device. We discuss the optical properties of the fabricated ring resonator from the viewpoint of equi-frequency-contour behavior in a dispersion space. We successfully characterize its optical characteristics on the basis of photonic crystal physics. It is suggested that the photonic ring resonator will be applicable to optical, dynamic memory devices for optical communication systems.

Optimization of charge and multiplication layers of 20-Gbps InGaAs/InAlAs avalanche photodiode

  • Sim, Jae-Sik;Kim, Kisoo;Song, Minje;Kim, Sungil;Song, Minhyup
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.916-922
    • /
    • 2021
  • We calculated the correlation between the doping concentration of the charge layer and the multiplication layer for separate absorption, grading, charge, and multiplication InGaAs/InAlAs avalanche photodiodes (APDs). For this purpose, a predictable program was developed according to the concentration and thickness of the charge layer and the multiplication layer. We also optimized the design, fabrication, and characteristics of an APD for 20 Gbps application. The punch-through voltage and breakdown voltage of the fabricated device were 10 V and 33 V, respectively, and it was confirmed that these almost matched the designed values. The 3-dB bandwidth of the APD was 10.4 GHz, and the bit rate was approximately 20.8 Gbps.