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Photonics offers a solution to data communication 
between logic devices in computing systems; however, the 
integration of photonic components into electronic chips is 
rather limited due to their size incompatibility. Dimensions 
of photonic components are therefore being forced to be 
scaled down dramatically to achieve a much higher  
system performance. To integrate these nano-photonic 
components, surface plasmon-polaritons and/or energy 
transfer mechanisms are used to form plasmonic chips. In 
this paper, the operating principle of plasmonic waveguide 
devices is reviewed within the mid-infrared spectral region 
at the 2 μm to 5 μm range, including lossless signal 
propagation by introducing gain. Experimental results 
demonstrate that these plasmonic devices, of sizes 
approximately half of the operating free-space wavelengths, 
require less gain to achieve lossless propagation. Through 
optimization of device performance by means of methods 
such as the use of new plasmonic waveguide materials that 
exhibit a much lower minimal loss value, these plasmonic 
devices can significantly impact electronic systems used in 
data communications, signal processing, and sensors 
industries. 
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I. Introduction 

The application of photonics in computing and information 
processing has been discussed over the past several decades. 
Impacted current computing systems consist of intra- and inter- 
chip interconnections that rely upon the flow of photons, 
thereby solving the communication problem between logic 
devices. In addition, photonics can also reduce the total 
operating energy of a digital logic system and the physical size 
of a chip. The influence of nano-technology in integrated 
optics⎯the third generation of photonic device 
technology⎯not only solves the ever-increasing data-transfer 
capacity problem, speeding-up electronic computer processing, 
but also allows computer chips to be miniaturized, enabling 
these data to route in sub-wavelength dimensions. 
Consequently, the cost of expensive optical components can be 
reduced and a higher system performance can be obtained. 

Recent investigations into electromagnetic properties of 
nano-structured waveguide materials have renewed interest in 
surface plasmons (quanta of collective excitations), with their 
applications being led to a new area of plasmonics, namely, 
surface-plasmon-based photonics. In a plasmonic integrated 
circuit, optical signals and electric current are carried 
concurrently through waveguide nano-structures. That is, 
optical signals propagate along the surface of conducting 
metals or active control-electrodes. This light-metal interaction 
gives rise to surface plasmon-polariton (SPP) electromagnetic 
modes that have a greater momentum than light at any 
particular optical frequency and are strongly confined to and 
guided by the planar metallic surface, where mobile electron-
charges reside. These modes can be controlled by guided 
waves from surrounding dielectric media and can also 
overcome the conventional diffraction-limit that limits the  
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Fig. 1. (a) An SPP waveguide nano-structure: (b) front view and
(c) side view with dimensions. 
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minimum size of conventional optical components and devices, 
allowing their dimensions to be further reduced to much 
smaller than the wavelength of light (that is, sub-wavelength 
sizes). Thus, the size of plasmonic waveguide devices is 
limited only by dimensions of the input/output coupler and the 
propagating or transmitting medium. 

II. Principles of Plasmonic Waveguides and Their
Functional Devices 

SPP single-mode waveguides are sub-wavelength 
components in miniaturized opto-electronic circuits that may 
either be used to guide plasmonic signals to various parts of a 
circuit or to develop functional devices with functions achieved 
by active-controlling confined guided waves. 

1. Waveguide-Device Physics 

SPP single-mode waveguides may be constructed with a thin 
lossy metal film stripe of thickness h, length l, and finite width 
w embedded in a dielectric medium (see Fig. 1). The 
symmetrically divided upper and lower dielectric media have 
an equal thickness of d and the whole structure is placed on a 
substrate as in Fig. 1(b). 

An SPP mode may be excited by the end-coupling (pig-
tailing) method, where a lightwave is fed onto the polished or 
cleaved metallic waveguide end-face that has a rough surface, 
with the input lightwave profile closely matching that of the 
guided wave to be excited. This incident light, having a 
frequency of ω, then interacts with mobile surface electron-
charges that have a frequency of ωp to give rise to the 
electromagnetic SPP mode with an enhanced field strength that 
is confined to the nano-scale dimension of the metal surface.  
The confined SPP mode, with ω < ωp, is thus tightly bound to 
the planar metal surface. It is guided by this surface and 
propagates with its energy dissipating as heat as a result of  

 

 

Fig. 2. Two TM SPP waves at dielectric-metal and metal-
dielectric interfaces are coupled in the metal film stripe 
and propagate in the z-direction; while field amplitudes 
Hy, or Ez, tail-off in the x-direction. Penetration depths 
of the SPP wave into the dielectric and into the metal 
and the wavelength of the symmetric SPP mode are 
shown in red. Also shown is the SPP wave-vector 
diagram in blue. 
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electron-lattice-imperfection collisions in the metal; these 
ohmic losses consequently limit the propagation distance, z, of 
SPP modes. On the other hand, the mode-field must vanish at 
infinity (that is, no energy should flow) in the transverse 
direction. This necessary condition requires the mode-field to 
decay exponentially in the surrounding upper and lower 
dielectric media, away from the surface, in the x-direction 
normal to metal-dielectric interfaces (see Fig. 2). Thus, the 
dielectric media must be sufficiently thick to include all the 
fields inside. On the other hand, the metal film stripe must be 
sufficiently thin so that the two SPP electric mode-fields 
associated with the upper and the lower interfaces overlap and 
couple with each other efficiently to form two fundamental 
SPP stripe-modes, of which the lower-energy tangential, or 
symmetric, mode (upper and lower SPP mode-fields in-phase 
with one another) is considered here for applications purposes. 
The thin metal film thickness should be on the order of 50 nm 
for most metals at optical frequencies to support the single 
stripe-SPP-mode propagation. By varying the thickness of the 
metal film stripe, the frequency and the wavelength λ of this 
stripe-mode may also be varied. 

The use of a dielectric gain medium can compensate for 
metal losses, allowing SPP modes to propagate along the 
metallic nanostructure without loss. In view of functional 
waveguide devices, the metal-dielectric hybrid waveguide 
structure is used, where the dielectric is treated as another 
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waveguide. Energy can be transferred from the dielectric gain 
medium to the propagating SPP mode, localizing it in the metal 
surface. The thin metal film stripe confines the lasing mode to 
the dielectric gain medium, with the SPP mode guiding the 
lasing mode. Thus, propagating modes in the gain dielectric 
can be controlled by SPP modes, or vice versa. 

2. Properties of Metals 

Metals play a major role in plasmonic waveguides and their 
devices. The conductivities of metals can be generally 
explained by the classical Drude model, from which the theory 
of optical properties of metals may be deduced. This model 
treats free electrons in metals as oscillators and solves the 
equation of motion under an applied electric field, E, to give 
the displacement of an electron from its initial position or from 
an ion. This displacement subsequently gives rise to an electric 
dipole moment. For a volume of electrons, the volume density 
of electric dipole moments is obtained and the expression for 
this induced electric polarization, P, in the metal may be 
written as 

e0( ) ( ) ( )ω ε χ ω ω=P E ,             (1) 

where χe is the electric susceptibility. Applying (1) to the 
electric displacement relation, D, one obtains 

m0 0( ) ( ) ( ) ( ) ( )ω ε ω ω ε ε ω ω= + =D E P E ,     (2) 

where εm(ω)=1+χe(ω) is the dielectric function or relative 
permittivity of the metal. The equivalent permittivity of the 
electron-plasma, εp(ω), may then be defined as 

p m0( ) ( )ε ω ε ε ω= ,               (3) 

from which the intrinsic impedance of the plasma, ηp(ω), is 
obtained: 

0
p

m
( )

( )
η

η ω
ε ω

= ,               (4) 

where η0 is the free-space intrinsic impedance. 
The Drude model assumes that the metal is a good or an 

ideal conductor. Predictions from this model agree well with 
reported experimental data for most metals operated at 
wavelengths of 1 μm and longer, which covers nearly the 
whole infrared spectrum. 

Optical properties of metals are characterized by the 
complex refractive index nm of an absorbing medium: 

m mn n jκ′= − ,              (5) 

where nm′ is the index of refraction, and κ is the extinction 
coefficient that is responsible for the evanescence of an optical 
wave. Both optical constants, nm′ and κ, are wavelength- and 

temperature-dependent. At optical frequencies, εp is a complex 
number and is related to nm by ε0nm

2. Matching this relation 
with that in (3), we obtain 

2
m mnε = ,                   (6) 

2 2 2
m m m m m( ) ( ) 2j n j n j nε ε κ κ κ′ ′′ ′ ′ ′− = − = − − ,    (7) 

where εm′ is a real constant and εm″ is responsible for the 
absorption and scattering losses in the metal. Matching 
dielectric constants with optical constants in (7), one obtains 

2 2
m mnε κ′ ′= −  and              (8a) 

m m2nε κ′′ ′= ,                   (8b) 

where optical constants are determined by reflection methods. 
From (7), we can also solve for optical constants in terms of 
dielectric constants, yielding 

2 2 2
m m m m

1 [ ]2n ε ε ε′ ′ ′′ ′= + + and          (9a) 

2 2 2
m m m

1 [ ]
2

κ ε ε ε′ ′′ ′= + − ,             (9b) 

where dielectric constants may be determined through the use 
of the mean time between electron collisions with lattice 
thermal vibrations or by the attenuated total reflection 
minimum method [1]. 

With these optical and dielectric constants, it is useful to 
define figures-of-merit (FOMs) for metal-materials to be used 
in plasmonic devices as parameters for the measurement of 
device performance or selection of metals for plasmonic 
waveguide structures. A reflectivity FOM, MR, which depends 
on optical properties of metals, measures reflectivity 
efficiencies of metal materials and is expressed as 

R
mn

M
κ
′

= .                (10) 

For nm′<<κ (MR≈0), reflectivities of light from metal surfaces 
are nearly 100%, particularly at the end-coupling excitation 
type of incidence. For an ideal metal, nm′=0 (MR=0), 
nm

2=−κ2<0 and εm=εm′<0. The propagating lightwave is always 
evanescent and the reflectivity of light from such a metal 
surface is always 100%. Such metal provides the total internal 
reflection for well-confined mode propagation. Thus, the 
smaller the MR value, the higher the reflectivity. Another useful 
FOM is the loss FOM, ML1, which depends on the material 
properties of metals. It measures the losses of metal materials 
and is expressed as 

m

m
L1 2M

ε
ε

′′
=

′
.                (11) 

The smaller the ML1, the lower the resistive heat loss or  
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Table 1. Properties of selected polycrystalline metals at λ=3.10 μm 
at room temperature. 

Metal nm MR εm 
ML1 

(×10-4)
ML2

(×10-4)
Beryllium 2.07−j12.6 0.1643 −154.48−j52.16 21.86 19.62

Copper 1.59−j16.5 0.0964 −269.72− j52.47 7.21 6.95

Gold 1.73−j19.2 0.0901 −365.65−j66.43 4.97 4.81

Tungsten 1.94−j13.2 0.1470 −170.48−j51.22 17.62 16.16

 
 

ohmic loss in the metal. A third FOM, ML2, which is a variation 
of ML1, is useful in measuring metal losses under the presence 
of gain and is expressed as 

m
L2 2

m

M
ε

ε

′′
= .               (12) 

One of the physical properties of interest for metals is the 
crystal structure, which is important when stability is a concern. 
Crystals with cubic and hexagonal structures exhibit structure-
type dependent anisotropies that do not appear in the 
polycrystalline structure. Polycrystalline metals are of random 
texture that may be induced by growth and processing 
conditions. Nearly all common metals are polycrystalline. 

For wavelengths between 2 μm to 5 μm, nm′<<κ or εm has a 
large negative εm′ and a small positive εm″ at room temperature, 
so that we may make the general assumption that |εm′|>>|εm″|. 
Table 1 lists refractive indices [2] and calculated relative 
permittivities and figures of merit of selected polycrystalline 
metals at λ=3.10 μm at room temperature. Among the metals 
listed in the table, gold exhibits the highest reflectivity 
efficiency and the lowest heat loss. 

3. SPP Propagation 

Propagation characteristics of SPP modes may be derived 
using the structure shown in Fig. 3. In this model, the SPP 
wave propagates along the planar interface between two semi-
infinite media, namely, a dielectric having a positive dielectric 
constant of nd

2 and a continuous planar metal having a negative 
dielectric constant of nm

2. This is just the upper-half of the 
model shown in Fig. 2 if we consider the upper interface. 

When an incident light hits the polished or cleaved metallic 
waveguide end-face, the lightwave is scattered in all directions, 
while the transmitted wave propagates at an angle, θ, to the 
normal of the interface and undergoes total internal reflections 
at the interface (see Fig. 2). This SPP wave has a propagation 
constant nmk0 (where k0=ω/c is the free-space wave-number of 
a lightwave) in the wave-normal direction, which may be 
decomposed into two components, kz and kx,m. At resonance,  

 

Fig. 3. An SPP mode at a planar interface between two semi-
infinite media, a dielectric having a positive dielectric 
constant of nd

2 and a continuous planar metal having a 
negative dielectric constant of nm

2. 
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kz=kspp so that kspp=k0nmsinθ is the wave-vector component   
of the SPP mode that is parallel to the interface, and      
kx,m= k0nmcosθ is the wave-vector component that is normal to 
the interface. This right triangle arrangement of wave-vectors 
allows us to apply the Pythagorean theorem to write       
kspp

2 + kx,m
2 = nm

2k0
2. This analytical relation, which is based on 

ray optics, may also be obtained from the wave equation for 
the SPP mode function, which holds separately in each 
medium of the structure shown in Fig. 3; thus, the derived 
relation [1], [3] becomes 

2 2 2
spp x, 0i ik k kε+ =  or             (13a) 

2 2
x, 0 sppi ik k kε= − ,  i = d, m,          (13b) 

where εi=ni
2 and kx,i is termed as the mode-field attenuation 

constant in the x-direction. 
The mode condition that determines the propagation 

characteristics of TM SPP modes can be obtained by solving 
the SPP wave equation subject to the continuity condition on 
tangential field components at the interface. This mode 
condition may then be solved to yield the axial propagation 
constant [3] β , where 

2 2
m d

0 2 2
m d

n n
k

n n
β =

+
.             (14) 

To evaluate dispersion characteristics of SPP modes, we re-
write (14) in terms of their respective relative permittivities to 
yield the dispersion relation for the SPP propagation: 

spp
m d

m d
k

c
ε εω

ε ε
=

+
,            (15) 

where kspp is termed as the propagation constant in the       
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z-direction. Confined SPP mode propagation requires that kspp 
is real. The dielectric medium should not be significantly 
dispersive, so that |εm|>>|εd|, and kspp is always larger than 
ω/c=k0, which implies that the momentum (ħk) of SPP modes 
is always greater than that of light in free space. Since kspp>k0, 
by inspection of (13), kx,i must be imaginary. The real kspp and 
the imaginary kx,i thus explain the characteristic of an SPP 
mode at an interface–the mode-fields are at their maximum at 
the interface and decay exponentially away from that interface. 

A. Waveguide Parameters under the Absence of Gain 

For the spectral region of interest, nm
2 and thus εm become 

complex. While the fundamental SPP mode propagates along 
the dielectric-metal interface, the mode-power attenuation due 
to ohmic losses causes β to become complex: 

,
2

j αβ β ′= −                (16) 

where β′ is the phase constant, and α is the power attenuation 
coefficient. The complex εm implies that kspp is also complex, 
so that (15) becomes 

spp spp spp

m md d
0

m m md d
     1 .

2 ( )

k k jk

k j
ε ε ε ε

ε ε ε ε ε

′ ′′= −

⎡ ⎤′ ′′
≈ −⎢ ⎥′ ′ ′+ +⎢ ⎥⎣ ⎦

     (17) 

Matching the real and the imaginary parts of this equation 
with those of (16) and making use of (11), we obtain 

spp
md

0
md

k k
ε ε

β
ε ε

′
′ ′≡ =

′+
           (18a) 

and 

( )

3/ 2
m0 d

spp 3
mm d

3
2

m0 d
L1

m d

2 2 ( )

     ,
2

k
k

k
M

ε εα

ε ε ε

ε ε
ε ε

′′
′′ ≡ ≈

′ ′+

⎛ ⎞′
= ⎜ ⎟⎜ ⎟′ +⎝ ⎠

         (18b) 

respectively. Here, kspp′ denotes the wavelength of the SPP 
mode, and λspp (see Fig. 2) and kspp″ denote the propagation 
length of the SPP mode, δspp. Applying the relation k=2π/λ to 
(18a), we obtain 

m d
spp 0

spp m d

2 ,
k

ε επλ λ
ε ε
′ +

= =
′ ′

           (19) 

where λ0 is the free-space wavelength. For |εm′|>>|εd|, λspp is 
always less than λ0, which suggests possible applications in 
shorter-wavelength electromagnetic wave-guiding. The SPP 
propagation length may be found by using the relation δ=1/α 
with (18b), yielding 

( ) 1
L1

3
2

m0 d
spp

spp m d

1 .
2 2

M
k

ε ελ
δ

π ε ε
− ⎛ ⎞′ +

= = ⎜ ⎟⎜ ⎟′′ ′⎝ ⎠
    (20) 

Comparing this equation with (19), we can see that 
δspp>>λspp, which means that we may use periodic surface 
structures (such as gratings) to manipulate SPPs, which allows 
these modes to interact with such structures over several 
periods. 

In a plasmonic circuit, an optical signal often fades away 
quickly during transmission in the SPP waveguide before 
reaching the destination because of the short propagation 
length. To increase the propagation length, we may choose a 
low-loss metal or a metal of high reflectivity efficiency, such as 
copper, gold (Table 1) or silver. Another option is to decrease 
the metal film thickness in order to decrease the attenuation of 
the SPP mode, but with the mode-field extended further into 
the dielectric. 

Penetration depths, or attenuation lengths, of the SPP mode-
field into the dielectric δd and into the metal δm (Figs. 2 and 3) 
may be found by taking the inverse of the magnitudes of their 
respective attenuation constants, that is, δi=1/|kx,i| and i = d, m. 
Thus, after applying (15) to (13b) and substituting, we obtain 

m d
2

0 d
d

x,d

1 1
kk

ε ε
δ

ε
+

= =            (21a) 

and 

m d
2
m

m
0x,m

1 1
kk

ε ε
δ

ε
+

= = ,          (21b) 

respectively. For k0=2π/λ0 and |εm|>>|εd|, δd(λ0) is proportional 
to |√εm|, which indicates that the field penetrates deeper into the 
dielectric as |εm| increases; while δm(λ0) is inversely 
proportional to |√εm|, which indicates that sizes of plasmonic 
waveguides miniaturize as |εm| increases. Here, δd measures the 
sensitivity of the SPP mode to refractive-index changes, while 
δm indicates the minimum metal film thickness to be used. 

B. Propagation in the Presence of Gain 

To compensate for ohmic losses in the metal, gain−a 
complicated function of doping levels, current density, 
temperature, and frequency−is introduced into the dielectric 
medium to improve the propagation length or to achieve 
lossless propagation. This causes the relative permittivity of the 
dielectric to become complex; that is, εd=εd′+jεd″. The 
dispersion relation in (15) can thus be written as 

m m2 2 d d
spp 0

m md d

( )( )
( ) ( )

j j
k k

j
ε ε ε ε
ε ε ε ε

′ ′′ ′ ′′− +
=

′ ′ ′′ ′′+ − −
 .        (22)  

Because εm′ is negative and |εm′|>>|εd|, one may also assume 
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Table 2. Propagation characteristics of SPP modes and required gain coefficients for lossless propagation. 

λ0 (μm) Metal Dielectric nm εm ML2 (×10-4) εd, εd′ λspp (nm) δspp (μm) δm (nm) δd (nm) |g| (cm)-1

2 Ag AlAs 0.65−j12.2 −148.42−j15.86 7.12 8.24 677.25 17.17 26.76 484.98 529.08

2 Cu AlAs 0.85−j10.6 −111.64−j18.02 14.09 8.24 670.66 8.30 31 425.65 1047.01

5 Fe GaAs 4.59−j15.4 −216.09−j141.37 21.20 10.88 1477.42 6.78 50.55 1200.19 956.07

5 Fe InP 4.59−j15.4 −216.09−j141.37 21.20 9.49 1587.34 8.41 50.42 1372.54 778.83

 

that |εm′|>>|εd′|,|εd″|. Assuming that a metal of high reflectivity 
efficiency is used, by separating (22) into real and imaginary 
parts and making use of (12), we obtain 

( ){
( ) }1

L2

2
222 0

spp m md d2
m d

2 2
m d d d

( )

( ) ,

k
k

j M

ε ε ε ε
ε ε

ε ε ε ε−

′ ′≈ × +
′ ′+

⎡ ⎤′′ ′′ ′′ ′+ − − +⎢ ⎥⎣ ⎦

 
(23)

 

where |εi|2=(εi′)2+(εi″)2, i = d, m. To find the amount of gain that 
fully compensates metal losses for lossless propagation, we set 
the imaginary part of (23) to zero and solve for εd″, yielding 

( )( )2
L2 dd Mε ε′′ ′≈ ;               (24) 

thus, the complex εd becomes εd′+j[(ML2)(εd′2)]. We can see 
that lower loss indicates that less gain is required for lossless 
propagation. 

The power gain coefficient g may then be obtained by 
interchanging the subscripts d and m in (18b), followed by 
linearly transforming α via a sign change (g=−α). Under the 
condition that |εm|>>|εd′|, we obtain 

d
0

d

.g k
ε
ε

′′
= −

′
 

By substituting (24) for εd″ for lossless propagation and using 
the definition of k0, we obtain the required gain coefficient to 
compensate for metal losses as 

( )L2
3/ 2

d
0

.
2 ( )g Mπ ε
λ

′= −          (25) 

Thus, as gain is added from initial g0=0 into the dielectric, the 
propagation length begins to increase until the gain reaches |g|, 
then lossless SPP propagation is achieved. This method of 
controlling the SPP propagation serves as a basis for 
modulators and switches, which are typical examples of 
plasmonic functional devices integrated into plasmonic opto-
electronic circuits, or plasmonic chips. 

Table 2 summarizes the propagation characteristics of SPP 
modes in four different plasmonic waveguides of sub-
wavelength sizes (δm). With δd ≈ λ0/4, the sizes of these whole 
waveguide structures turn out to be approximately λ0/2. Table 2 

also lists the gain coefficients necessary to compensate for 
metal losses. As gain represents a loss in the dielectric, gain 
requirements should be as low as possible. As seen in (25), the 
wavelength band of interest clearly has a lower gain 
requirement than shorter wavelengths in the mid-infrared band, 
such as the telecommunication wavelength of 1.55 μm, 
because of the λ0

−1 dependence. When all parameters in (25) 
vary, the gain requirement may or may not be lowered. For 
example, if we increase λ0 from 2 μm to 5 μm and increase εd′ 
to larger than 8.24, then, |g| will be lowered if a slightly more 
lossy metal is used. However, |g| will be increased if a very 
lossy metal is used. When λ0 and εd′ are kept constant, |g| is 
proportional to ML2. That is, lower-loss metals can reduce gain 
requirements. When λ0 and ML2 are kept constant, as εd′ 
decreases, |g| decreases, which suggests that a lower refractive 
index for the dielectric may be used to reduce the gain 
requirement. 

III. Optimization of Device Performance 

In practice, besides absorption losses in metals, we should take 
into account additional losses, such as scattering losses (due to 
surface roughness and metal-stripe edges) and grain boundaries, 
which can increase the gain requirement. Advanced deposition 
techniques, such as nano-fabrication, and good surface quality 
may improve the gain requirement and should be carefully 
considered when preparing samples. Besides introducing gain 
into the dielectric medium to compensate for ohmic losses in 
metals, the volume of the metal itself can be reduced to its 
smallest possible dimension in order to reduce ohmic losses. The 
high reflection from metals can be compensated by matching 
impedances on metals. Both absorption and scattering in the 
dielectric also contribute to propagation losses. 

For functional devices, the insertion loss associated with 
metal electrodes should also be reduced. By using a buffer 
layer with a lower refractive index (for example, a layer that 
has a different weight in chemical composition than the metal) 
to relax the metal’s effect on guided modes and for better 
confinement in the dielectric, propagation loss due to the metal-
dielectric interface can be reduced to an insignificant level by 
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increasing the buffer-layer thickness. 
The symmetrical SPP waveguide structure offers the lowest 

SPP propagation loss among SPP waveguide structures of 
proper dimensions. For a functional SPP-waveguide device, 
where another guided wave, excited by an external optical 
excitation or a temperature change in the dielectric medium, 
interacts with the SPP mode, the waveguide structure becomes 
asymmetrical as a consequence of the refractive index change. 
Since the SPP propagation loss depends on the refractive-index 
difference between top and bottom dielectric layers, the greater 
the asymmetry, the higher the propagation loss and the shorter 
the propagation length. This asymmetry causes the SPP mode 
depth profile (depth mode-field diameter, DMFD) to change 
from a symmetric profile to an asymmetric profile as well. The 
DMFD, depending on the thickness of the metal stripe, 
determines the tightness of the SPP mode that is bound to the 
metal surface and can be tuned by the thickness of the 
dielectric. Reducing the dielectric thickness increases the 
propagation loss as does reducing the metal film thickness. 
However, this also allows the mode to become better confined. 
Thus, there is a trade-off between mode size and propagation 
loss. 

A metal film stripe with a finite width w, as in Fig. 1(c), is 
treated as a core surrounded by a dielectric. Generally, the 
propagation loss decreases as w decreases, indicating a very 
low propagation loss may be achieved by reducing w. 
However, when w becomes narrower than a certain width, no 
guided modes can exist in the metal stripe. This causes 
propagation lengths to become zero, which limits the 
propagation on the stripe.  Nevertheless, for micro-meter-
wide stripes, the lateral MFD (LMFD), depending on the width 
of the metal stripe, determines the confinement of the SPP 
mode. Reducing w causes the LMFD to decrease at first, but at 
a certain w, LMFD starts to increase, showing a poor light 
confinement with too-narrow metal stripes. Consequently, the 
DMFD increases. For the asymmetrical SPP waveguide 
structure, decreasing w also decreases the propagation length; 
thus, there is a trade-off between confinement and propagation 
length. From these features of SPP-mode depth and lateral 
profiles, we conclude that coupling losses at one end of the 
metal stripe waveguide will increase as w decreases. Therefore, 
by choosing a proper metal film stripe dimension, we can 
reduce the coupling loss, with SPP mode profiles matching 
closely with those of the incident mode. 

For highly efficient functional waveguide devices, careful 
selection of practical materials allows the minimization of 
losses, such as propagation loss and transmission loss, and 
facilitates fabrication processes. An optimally low propagation 
loss requires an optically transparent material with minimal 
surface roughness and guided-wave scattering. This material 

should also be highly purified after fabrication processes in order 
to avoid unnecessary absorption by impurities. The availability 
of new semiconductor laser materials that can operate in the 
longer 2 μm to 5 μm mid-infrared wavelength band allows 
plasmonic waveguide devices to be constructed with a minimal 
loss value much lower than that found in the shorter mid-infrared 
wavelength band. This extremely low-loss dielectric gain 
material system includes fluorides, chalcogenides, halides and 
III-V compound semiconductor nano-crystals. At optical 
frequencies, the choice of a metal material for the plasmonic 
waveguide structure becomes crucial. Highly confined mode 
propagation requires a metal to have high reflectivity efficiency 
so as to lower the operating power and thus reduce the heat loss 
in the metal. Among polycrystalline metals, the three candidate 
metals for lowest losses are silver, gold, and copper, in that order. 
Recently, an artificial negative-index material, metamaterial, was 
found to have the capability of mimicking the response of a 
metal to electromagnetic waves when ω < ωp, that is, the 
negative εm. Metamaterials have fascinating unprecedented pre-
designed electromagnetic properties and functionalities that 
promise to open up a new prospect in manipulating light, 
revolutionizing today’s optical technologies for better electronic 
system performance. 

IV. Conclusion 

For highly efficient data communication, the most important 
factor is to minimize propagation losses and transmission 
losses. At wavelengths in the 2 μm to 5 μm mid-infrared region, 
compensated plasmonic waveguides, with a structure of a 
nanometer-thin polycrystalline metal embedded in a dielectric 
gain medium and a reduced whole-structure size of 
approximately half of the operating free-space wavelength, 
offer the possibility to transmit plasmonic signals with 
negligible (or without) losses. Functional plasmonic waveguide 
devices of the metal-dielectric hybrid waveguide structure may 
then be implemented by active guided-wave control of these 
plasmonic signals. By optimizing the plasmonic waveguide 
geometry and carefully selecting low-loss waveguide materials, 
we can further reduce the gain requirement and other losses, 
enabling SPP-based functional waveguide devices to operate 
more efficiently. With the proper choice of processing 
conditions in nano-imprinting, low-cost, high-fidelity, and 
highly-ordered arrays of sub-wavelength nano-structured 
photonic components can be rapidly mass-produced. 
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