Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2020.10.06.028

Characterization of photonic quantum ring devices manufactured using wet etching process  

Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College)
Lee, Jongpil (Department of Electrical and Electronic Engineering, Jungwon University)
Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
Publication Information
Journal of Convergence for Information Technology / v.10, no.6, 2020 , pp. 28-34 More about this Journal
Abstract
A structure in which GaAs and AlGaAs epilayers are formed with a metal organic chemical vapor deposition equipment on a GaAs wafer similar to the structure of making a vertical cavity surface emitting laser is used. Photonic Quantum Ring (PQR) devices that are naturally generated by 3D resonance are manufactured by chemically assisted ion beam etching technology, which is a dry etching method. A new technology that can be fabricated has been studied, and as a result, the possibility of wet etching of a solution containing phosphoric acid, hydrogen peroxide and methanol was investigated, and the device fabrication by applying this method are also discussed. In addition, the spectrum of the fabricated optical device was measured, and the results were theoretically analyzed and compared with the wavelength value obtained by the measurement. It is expected that the PQR device will be able to model cells in a three-dimensional shape or be applied to the display field.
Keywords
Photonic quantum ring device; Wet etching; 3 dimensional resonance mode; Spectrum; Wavelength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Bohm, S. Jatta, F. Kuppers, P. Meissner & M. Amann. (2011). Surface micromachined tunable 1.55 ${\mu}m$-VCSEL with 102 nm continuous single-mode tuning. Optics Express, 19(18), 17336-17343. DOI : 10.1364/OE.19.017336   DOI
2 V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin & A. Cable. (2012). High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range. Electronics Letters, 48(14), 867-869. DOI : 10.1049/el.2012.1552   DOI
3 K. Iga. (2000). Surface-emitting laser-its birth and generation of new optoelectronics field. IEEE Journal of Selected Topics in Quantum Electronics, 6(6), 1201-1215. DOI : 10.1109/2944.902168   DOI
4 B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin & J. L. Pelouard. (1999). High-Q wet etched GaAs microdisks containing InAs quantum boxes. Applied Physics Letters, 75(13), 1908-1910. DOI : 10.1063/1.124894   DOI
5 G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta & A. Y. Cho. (1991). Performance of Gain-Guided Surface Emitting Lasers with Semiconductor Distributed Bragg Reflector. IEEE Journal of Quantum Electronics, 27(6), 1377-1385. DOI : 10.1109/3.89954   DOI
6 J. H. Ser, Y. G. Ju, J. H. Shin & Y. H. Lee. (1995). Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings. Applied Physics Letters, 66(21), 2769-2771. DOI : 10.1063/1.113469   DOI
7 T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto & K. Kasahara. (1995). Complete polarization control of 8 ${\times}$ 8 vertical-cavity surface-emitting laser matrix arrays. Applied Physics Letters, 66(8), 908-910. DOI : 10.1063/1.113593   DOI
8 M. Fujita, R. Ushigome & T. Baba. (2001). Large Spontaneous Emission Factor of 0.1 in a Microdisk Injection Laser. IEEE Photonics Technology Letters, 13(5), 403-405. DOI : 10.1109/68.920731   DOI
9 R. Hristu, S. G. Stanciu, S. J. Wu, F.-J. Kao, O'D. Kwon & G. A. Stanciu. (2011). Optical beam induced current microscopy of photonic quantum ring lasers. Applied Physics B, 103, 653-657. DOI : 10.1007/s00340-011-4441-3   DOI
10 D. K. Kim, Y. C. Kim, M. H. Sheen & O'D. Kwon. (2009). Spatiotemporal dynamics in Rayleigh band of photonic quantum ring laser. Optical and Quantum Electronics, 41, 913-919. DOI : 10.1007/s11082-010-9405-z   DOI
11 J. W. Bae, J. W. Lee, O'Dae Kwon & V. G. Minogin. (2003). Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment. Optics Letters, 28(20), 1861-1863. DOI : 10.1364/OL.28.001861   DOI
12 O'D. Kwon, D. K. Kim, J. H. Yoon, Y. C. Kim, Y. H. Jang & M. H. Shin. (2009). Photonic quantum ring laser of 3D whispering cave mode. Microelectronics Journal, 40(3), 570-573. DOI : 10.1016/j.mejo.2008.06.092   DOI
13 O. D. Kwon. (2018). A new spectroscopy based upon 3D photonic quantum ring lasers for non-invasive and portable brain/heart disease diagnostic techniques. Phys. Lett, 81, 580-582. DOI : 10.21767/2349-3917-C1-002
14 Y. Mori & N. Watanabe. (1978). A New Etching Solution System, $H_3PO_4-H_2O_2-H_20$, for GaAs and Its Kinetics. Journal of The Electrochemical Society, 125(9), 1510-1514. DOI : 10.1149/1.2131705   DOI
15 B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek & O'Dae Kwon. (2001). Evanescent and propagating wave characteristics of the photonic quantum ring laser. Applied Physics Letters, 79(11), 1593-1595. DOI : 10.1063/1.1402655   DOI
16 J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim & O'Dae Kwon. (1999). Photonic Quantum Ring. Physical Review Letters, 82(3), 536-539. DOI : 10.1103/PhysRevLett.82.536   DOI