• Title/Summary/Keyword: photonic crystal fiber

Search Result 79, Processing Time 0.037 seconds

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Characterization of Supercontinuum and Ultraviolet Pulses by Using XFROG

  • Tsermaa, Baatarchuluun;Yang, Byung-Kwan;Kim, Myung-Whun;Kim, Jin-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.158-165
    • /
    • 2009
  • We present cross-correlation frequency-resolved optical gating (XFROG) measurements of supercontinuum pulses generated by using a photonic crystal fiber (PCF), and ultraviolet (UV) pulses generated by frequency doubling of infrared ultra-short pulses. Since supercontinuum pulses have broad spectra, XFROG measurement typically requires using an extremely thin nonlinear crystal which has a thickness of sub-ten microns. Instead of using such a thin crystal, we employed a relatively thick crystal which was mounted on a galvanometer in order to achieve a phase-matching over the whole spectral bandwidth of the supercontinuum pulses by a crystal-dithering technique. Experimental results of the retrieved phase and intensity were in fair agreement with the independently measured data.

Low Loss Highly Birefringent Porous Core Fiber for Single Mode Terahertz Wave Guidance

  • Habib, Md. Ahasan;Anower, Md. Shamim
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.215-220
    • /
    • 2018
  • A novel porous-core hexagonal lattice photonic crystal fiber (PCF) is designed and analyzed for efficient terahertz (THz) wave propagation. The finite element method based Comsol v4.2 software is used for numerical analysis of the proposed fiber. A perfectly matched layer boundary condition is used to characterize the guiding properties. Rectangular air-holes are used inside the core to introduce asymmetry for attaining high birefringence. By intentionally rotating the rectangular air holes of porous core structure, an ultrahigh birefringence of 0.045 and low effective material loss of $0.086cm^{-1}$ can be obtained at the operating frequency of 0.85 THz. Moreover, single-mode properties, power fraction in air core and confinement loss of the proposed PCF are also analyzed. This is expected to be useful for wideband imaging and telecom applications.

Photonic Crystal Fiber

  • Korea Optical Industry Association
    • The Optical Journal
    • /
    • s.101
    • /
    • pp.64-70
    • /
    • 2006
  • 세계 정보통신시장은 향후 수년간 광통신 및 광신호 처리 분야를 중심으로 폭발적인 수요가 늘어나 수천억 달러의 시장이 형성될 것으로 예상하고 있으며 각 선진국은 광섬유 소자 개발에 앞 다투어 뛰어들 것으로 보인다. 국내적으로도 연간 1조원 이상의 광통신 관련 수요가 있을 것으로 전망되며 국내 전송용 광섬유시장 또한 2005년 이후 전 세계시장의 10%수준으로 성장할 것이 예상되고 있다. 이에 따라 기존에 DCF관련으로 삼성전자를 비롯하여 국내 중소 광섬유 제조업체들이 중심으로 개발에 뛰어들고 있으나 특허문제로 생산에 차질을 빚고 있는 문제와 결부하여 현시점에서 중단하지 않고 장기적인 응용 가능성을 고려한 지속적인 연구가 요망된다.

  • PDF

Ultrahigh Birefringence and Extremely Low Loss Slotted-core Microstructure Fiber in Terahertz Regime

  • Habib, Md. Ahasan;Anower, Md. Shamim;Hasan, Md. Rabiul
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.567-572
    • /
    • 2017
  • A novel slotted-core hexagonal photonic crystal fiber (PCF) for terahertz (THz) wave guiding is proposed in this paper. A trade-off managed between effective material loss (EML) and birefringence for efficient guidance of THz waves is illustrated in this article. The rectangular slot shaped air-holes break the symmetry of the porous-core which offers ultra-high birefringence of $8.8{\times}10^{-2}$. The proposed structure offers low bending loss of $1.07{\times}10^{-34}cm^{-1}$ and extremely low effective material loss (EML) of $0.035cm^{-1}$ at an operating frequency of 1.0 THz. In addition other guiding properties such as power fraction, dispersion and confinement loss are also discussed. The proposed THz waveguide can be effectively used for convenient transmission of THz waves.

Polarimetric Fiber Pressure Sensor Incorporating Polarization-Diversity-Loop-Based Sagnac Interferometer (편광상이 고리 구조 기반 사냑 간섭계를 이용한 편광 간섭형 광섬유 압력 센서)

  • Ryu, Uh-Chan;Choi, Sung Wook;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, we demonstrated a polarimetric fiber pressure sensor using a polarization-diversity-loop-based Sagnac interferometer(PDLSI) composed of polarization-maintaining fiber(PMF) and a fiber Bragg grating(FBG). In order to compare the pressure sensitivity for various kinds of PMF, three kinds of bow-tie PMF were employed as sensor heads. The maximum pressure sensitivity was measured as approximately -15.07nm/MPa, and an R2 value to represent sensor linearity was measured as ~0.992 at the sensor system using corresponding PMF over a pressure range of 0-0.3MPa. An FBG was utilized and located adjacent to the PMF segment for compensating temperature-induced errors in the measurement of pressure. The pressure sensitivity of the proposed sensor was improved by approximately four times compared with the previously reported pressure sensor based on polarization-maintaining photonic crystal fiber.

Design of Metal-Slit Fresnel Lens for Enhanced Coupling Efficiency (광 결합 및 집속도 향상을 위한 금속 슬릿 프레넬 렌즈의 설계)

  • Park, Dong-Won;Jung, Young-Jin;Koo, Suk-Mo;Yu, Sun-Kyu;Park, Nam-Kyoo;Jhon, Young-Min;Lee, Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Recently, much research has been done for to realizeing nano-scale photonic circuits based on photonic crystal, plasmonics and silicon photonics in order to overcome fundamental limits of electronic circuits. These limits include such as bottleneck of speed, and size that cannot be reduced. Even though several kinds of coupling schemes have been reported, coupling structures are still large when it is compared with the nano-scale optical circuit. In this paper, we proposed using a very thin Fresnel lens while shortening the focal length of the Fresnel lens as much as possible. We proposed, for the first time, to utilize metal slits that are able to use the optical coupling system between a nano-scale optical circuit and the standard single mode optical fiber for overcoming the limitation of focal length shortening of the Fresnel lens. Comparative study has been carried out with a FDTD simulation between normal and metal slit assisted Fresnel lens. From the result of simulation, we can achieve 65% coupling efficiency for the metal-slit Fresnel lens when the focal length of metal-slit Fresnel lens is just $4{\mu}m$. On the other hand, the coupling efficiency of the normal Fresnel lens is about 43%.

Absorption Spectra of Standard Gases for Wavelength Reference in C-band using a Supercontinuum Source Based on a Mode-locked Cr4+:YAG Laser (모드 잠금 Cr4+:YAG 레이저로부터 발생된 초 광대역 광원을 이용한 광통신 파장 영역의 표준 가스의 흡수스펙트럼)

  • Lee, Jong-Min;Jeon, Min-Yong;Ryu, Han-Young;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 2008
  • We report on the measurements of absorption spectra from acetylene ($^{12}C_2H_2$) and hydrogen cyanide ($H^{13}C^{14}N$) for wavelength reference in the C-band (conventional band) region using a supercontinuum optical source generated from a mode-locked $Cr^{4+}$:YAG laser. The center wavelength of the mode-locked $Cr^{4+}$:YAG laser was 1510 nm and the pulse duration was 75 fs at 100 MHz repetition rate. The supercontinuum source achieved a flatness of ${\pm}5dB$ over a wavelength range of more than 400 nm, using a 20 m long photonic crystal fiber. The measured absorption spectra from acetylene ($^{12}C_2H_2$) and hydrogen cyanide ($H^{13}C^{14}N$) had more than 50 lines and were analyzed for wavelength standardization.