DOI QR코드

DOI QR Code

Low Loss Highly Birefringent Porous Core Fiber for Single Mode Terahertz Wave Guidance

  • Habib, Md. Ahasan (Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University) ;
  • Anower, Md. Shamim (Department of Electrical and Electronic Engineering, Rajshahi University of Engineering & Technology)
  • 투고 : 2018.03.13
  • 심사 : 2018.05.28
  • 발행 : 2018.06.25

초록

A novel porous-core hexagonal lattice photonic crystal fiber (PCF) is designed and analyzed for efficient terahertz (THz) wave propagation. The finite element method based Comsol v4.2 software is used for numerical analysis of the proposed fiber. A perfectly matched layer boundary condition is used to characterize the guiding properties. Rectangular air-holes are used inside the core to introduce asymmetry for attaining high birefringence. By intentionally rotating the rectangular air holes of porous core structure, an ultrahigh birefringence of 0.045 and low effective material loss of $0.086cm^{-1}$ can be obtained at the operating frequency of 0.85 THz. Moreover, single-mode properties, power fraction in air core and confinement loss of the proposed PCF are also analyzed. This is expected to be useful for wideband imaging and telecom applications.

키워드

참고문헌

  1. M. M. Awad and R. A. Cheville, "Transmission terahertz waveguide-based imaging below the diffraction limit," Appl. Phys. Lett. 86, 221107-1-221107-3 (2005). https://doi.org/10.1063/1.1942637
  2. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. J. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," Biol. Phys. 29, 257-259 (2003). https://doi.org/10.1023/A:1024409329416
  3. A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, "Terahertz technology and its applications," Drug Invent. Today 5, 157-163 (2013). https://doi.org/10.1016/j.dit.2013.03.009
  4. M. R. Hasan, M. S. Anower, M. A. Islam, and S. M. A. Razzak, "Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance," Appl. Opt. 55, 4145-4152 (2016). https://doi.org/10.1364/AO.55.004145
  5. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Matyas, C. Jirauschek, Q. Hu, and H. C. Liu, "Terahertz quantum cascade lasers operating up to -200 K with optimized oscillator strength and improved injection tunneling," Opt. Express 20, 3866 (2012). https://doi.org/10.1364/OE.20.003866
  6. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, and Q. Hu, "Real-time terahertz imaging over a standoff distance (> 25 meters)," Appl. Phy. Lett. 89, 141125(1-3) (2006).
  7. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). https://doi.org/10.1038/nature03040
  8. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. J. Skorobogatiy, "Hollow-core terahertz optical waveguides with hyperuniform disordered reflectors," Opt. Soc. Am. B 28, 896-907 (2011). https://doi.org/10.1364/JOSAB.28.000896
  9. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic fiber," Appl. Phys. Lett. 80, 2634-2639 (2002). https://doi.org/10.1063/1.1468897
  10. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006). https://doi.org/10.1364/OL.31.000308
  11. S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, "Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion," Opt. Express 20, 1385-1391 (2012). https://doi.org/10.1364/OE.20.001385
  12. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightw. Technol. 4, 1071-1089 (1986). https://doi.org/10.1109/JLT.1986.1074847
  13. M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, "Low-loss and bend-insensitive terahertz fiber using a rhombic shaped core," Appl. Phys. Lett. 98, 151104 (2011). https://doi.org/10.1063/1.3579258
  14. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express 16, 712 (2008).
  15. G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, "A novel low loss, highly birefringent photonic crystal fiber in THz regime," IEEE Photon. Technol. Lett. 28, 899-902 (2016). https://doi.org/10.1109/LPT.2016.2517083
  16. N. Chen, J. Liangand, and L. Ren, "High-birefringence, lowloss porous fiber for single-mode terahertz wave guidance," Appl. Opt. 52, 5297-5302 (2013). https://doi.org/10.1364/AO.52.005297
  17. R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, M. A. Sadat, and C. Markos, "A novel low loss diamondcore porous fiber for polarization maintaining terahertz transmission," IEEE Photon. Technol. Lett. 28, 1537-1540 (2016). https://doi.org/10.1109/LPT.2016.2550205
  18. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002). https://doi.org/10.1049/el:20020421