DOI QR코드

DOI QR Code

Design of Metal-Slit Fresnel Lens for Enhanced Coupling Efficiency

광 결합 및 집속도 향상을 위한 금속 슬릿 프레넬 렌즈의 설계

  • Park, Dong-Won (School of Electrical Engineering and Computer Sciences, Seoul National University) ;
  • Jung, Young-Jin (School of Electrical Engineering and Computer Sciences, Seoul National University) ;
  • Koo, Suk-Mo (School of Electrical Engineering and Computer Sciences, Seoul National University) ;
  • Yu, Sun-Kyu (School of Electrical Engineering and Computer Sciences, Seoul National University) ;
  • Park, Nam-Kyoo (School of Electrical Engineering and Computer Sciences, Seoul National University) ;
  • Jhon, Young-Min (Korea Institute of Science and Technology) ;
  • Lee, Seok (Korea Institute of Science and Technology)
  • 박동원 (서울대학교 전기컴퓨터 공학부) ;
  • 정영진 (서울대학교 전기컴퓨터 공학부) ;
  • 구석모 (서울대학교 전기컴퓨터 공학부) ;
  • 유선규 (서울대학교 전기컴퓨터 공학부) ;
  • 박남규 (서울대학교 전기컴퓨터 공학부) ;
  • 전영민 (한국과학기술연구원) ;
  • 이석 (한국과학기술연구원)
  • Published : 2009.02.25

Abstract

Recently, much research has been done for to realizeing nano-scale photonic circuits based on photonic crystal, plasmonics and silicon photonics in order to overcome fundamental limits of electronic circuits. These limits include such as bottleneck of speed, and size that cannot be reduced. Even though several kinds of coupling schemes have been reported, coupling structures are still large when it is compared with the nano-scale optical circuit. In this paper, we proposed using a very thin Fresnel lens while shortening the focal length of the Fresnel lens as much as possible. We proposed, for the first time, to utilize metal slits that are able to use the optical coupling system between a nano-scale optical circuit and the standard single mode optical fiber for overcoming the limitation of focal length shortening of the Fresnel lens. Comparative study has been carried out with a FDTD simulation between normal and metal slit assisted Fresnel lens. From the result of simulation, we can achieve 65% coupling efficiency for the metal-slit Fresnel lens when the focal length of metal-slit Fresnel lens is just $4{\mu}m$. On the other hand, the coupling efficiency of the normal Fresnel lens is about 43%.

최근 광 격자구조나(photonic crystal) 표면 플라즈몬파(surface plasmon) 혹은 실리콘을 이용한 나노(nano) 스케일의 광 회로 시스템에 대한 연구가 활발한데, 이는 이미 한계에 다다른 전자회로속도의 한계를 극복하고 지금보다도 훨씬 작은 회로를 구성할 수 있는 이점이 있기 때문이다. 현재까지 보고된 바 있는 광 결합 시스템들은 그 크기가 나노 스케일의 광 회로 시스템에 비해 커서 광 결합 시스템으로서의 의미가 퇴색되고 있는데 본 논문에서는 매우 짧은 초점 거리를 가지며 매우 얇은 구조를 가지는 프레넬 렌즈를 이용한 광 결합 시스템을 제안하여 광 결합 시스템을 나노 스케일 광 회로 시스템과 비교할 수 있을 정도로 소형화 하는 방법을 모색하였다. 본 논문에서는 금 슬릿을 채용한 프레넬 렌즈를 제안하여 설계하고 그 구조를 이용해 2차원 전산모사를 수행하였다. 그 결과, 일반 프레넬 렌즈의 광 결합 효율이 약 43%인데 반해, 금 슬릿을 채용한 프레넬 렌즈의 광 결합 효율은 가장 효율적인 구조로 설계하였을 경우에 최대 약 65%의 광 결합 효율을 보인다. 일반 프레넬 렌즈에 비해 50% 이상의 광 결합 효율의 향상을 달성하였다.

Keywords

References

  1. Sunkyu Yu, Sukmo Koo, and Namkyoo Park, “Coded output photonic A/D converter based on photonic crystal slow-light structures,” Opt. Exp., vol. 16, no 18, pp. 13752-13757, September 2008 https://doi.org/10.1364/OE.16.013752
  2. Paul E. Barclay, Kartik Srinivasan, Matthew Borselli, and Oskar Painter, “Efficient input and output fiber coupling to a photonic crystal waveguide,” Opt. Lett., vol. 29, no. 7, pp. 697-699, 2004 https://doi.org/10.1364/OL.29.000697
  3. L. Vivien, S. Laval, E. Cassan, X.Le Roux, and D. Pascal, “2-D taper for low-loss coupling between polarizationinsensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol., vol. 21, pp. 2429-2433, 2003 https://doi.org/10.1109/JLT.2003.817692
  4. V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Siliconbased highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett., vol. 88, 081112, 2006 https://doi.org/10.1063/1.2179129
  5. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightw. Technol., vol. 25, no. 1, pp.151-156, Jan. 2007 https://doi.org/10.1109/JLT.2006.888164
  6. D. Michaelis, C. Wachter, S. Burger, L. Zschiedrich, and A. Brauer, “Micro-optically assisted high-index waveguide coupling,” Appl. Opt., vol. 45, no. 8, pp. 1831-1838, 2006 https://doi.org/10.1364/AO.45.001831
  7. M. Ken McGaugh, Carl M. Verber, and Richard P. Kenan, “Modified integrated optic Fresnel lens for waveguide-tofiber coupling,” Appl. Opt., vol. 34, no. 9, pp. 1562-1568, March 1995 https://doi.org/10.1364/AO.34.001562
  8. Zhijun Sun and Hong Koo Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett., vol. 85, no. 4, pp. 642-644, July 2004 https://doi.org/10.1063/1.1776327
  9. Haofei Shi, Changtao Wang, Chunlei Du, Xiangang Luo, Xiaochun Dong, and Hongtao Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Exp., vol. 13, no. 18, pp. 6815-6820, September 2005 https://doi.org/10.1364/OPEX.13.006815
  10. Rakic A. D., Djurisic A. B., Elazar J. M., and Majewski M. L., “Optical properties of metallic films for verticalcavity optoelectronic devices,” Appl. Opt., vol. 37, no. 22, pp. 5271-5283, 1998 https://doi.org/10.1364/AO.37.005271