DOI QR코드

DOI QR Code

Characterization of Supercontinuum and Ultraviolet Pulses by Using XFROG

  • Tsermaa, Baatarchuluun (Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Yang, Byung-Kwan (Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Kim, Myung-Whun (Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Kim, Jin-Seung (Institute of Photonics and Information Technology, Chonbuk National University)
  • Received : 2009.02.04
  • Accepted : 2009.03.04
  • Published : 2009.03.25

Abstract

We present cross-correlation frequency-resolved optical gating (XFROG) measurements of supercontinuum pulses generated by using a photonic crystal fiber (PCF), and ultraviolet (UV) pulses generated by frequency doubling of infrared ultra-short pulses. Since supercontinuum pulses have broad spectra, XFROG measurement typically requires using an extremely thin nonlinear crystal which has a thickness of sub-ten microns. Instead of using such a thin crystal, we employed a relatively thick crystal which was mounted on a galvanometer in order to achieve a phase-matching over the whole spectral bandwidth of the supercontinuum pulses by a crystal-dithering technique. Experimental results of the retrieved phase and intensity were in fair agreement with the independently measured data.

Keywords

References

  1. G. D. Reid and K. Wynne, Ultrafast Laser Technology and Spectroscopy (Wiley, Chichester, 2000)
  2. H. Kang, C. C. Byeon, M.-K. Oh, D.-K. Ko, J. Lee, J. S. Kim, H.-G. Choi, M. S. Jeong, and C.-S. Kee, 'Coherent absorption spectroscopy with supercontinuum for semiconductor quantum well structure,' J. Opt. Soc. Korea 11, 138-141 (2007) https://doi.org/10.3807/JOSK.2007.11.3.138
  3. I.-B. Shon, Y.-C. Noh, Y. S. Kim, D.-K. Ko, J. Lee, and Y.-J. Choi, 'Laser ablation of polypropylene films using nanosecond, picosecond, and femtosecond laser,' J. Opt. Soc. Korea 12, 38-41 (2008) https://doi.org/10.3807/JOSK.2008.12.1.038
  4. R. Trebino, Frequency-Resolved Optical Gating (Kluwer, Boston, 2002)
  5. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, 'Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,' Rev. of Sci. Inst. 68, 3277-3295 (1997) https://doi.org/10.1063/1.1148286
  6. R. Trebino and D. J. Kane, 'Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,' J. Opt. Soc. Am. A 10, 1101-1111 (1993) https://doi.org/10.1364/JOSAA.10.001101
  7. X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, 'The measurement of ultrashort light pulsessimple devices, complex pulses,' Opt. Rev. 11, 141-152 (2004) https://doi.org/10.1007/s10-043-0041-8
  8. C. Iaconis and I. Walmsley, 'Self-referencing spectral interferometry for measuring ultrashort optical pulses,' IEEE J. of Quantum Electron. 35, 501-509 (1999) https://doi.org/10.1109/3.753654
  9. S. Linden, H. Giessen, and J. Kuhl, 'XFROG: a new method for amplitude and phase characterization of weak ultrashort pulses,' Phys. Stat. Sol. (b) 206, 119-124 (1998) https://doi.org/10.1002/(SICI)1521-3951(199803)206:1<119::AID-PSSB119>3.0.CO;2-X
  10. K. W. Delong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, 'Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections,' Opt. Lett. 19, 2152-2154 (1994) https://doi.org/10.1364/OL.19.002152
  11. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, 'Highly simplified ultrashort pulse measurement,' Opt. Lett. 26, 932-934 (2001) https://doi.org/10.1364/OL.26.000932
  12. B. K. Yang, H. S. Rho, J. M. Seo, and J. S. Kim, 'Design, construction and calibration of a GRENOUILLE, single-shot, ultrashort-pulse measurement system,' J. Korean Phys. Soc. 52, 269-274 (2008) https://doi.org/10.3938/jkps.52.269
  13. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, 'Increasedbandwidth in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal,' Opt. Exp. 7, 342-349 (2000) https://doi.org/10.1364/OE.7.000342
  14. B. Tsermaa, B. K. Yang , J. M. Seo, and J. S. Kim, 'A sub-10-fs Ti:sapphire oscillator with a simple fourmirror cavity,' J. Korean Phys. Soc. 52, 1043-1047 (2008) https://doi.org/10.3938/jkps.52.1043
  15. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. Windeler, 'Crosscorrelation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,' Opt. Exp. 10, 1215-1221 (2002) https://doi.org/10.1364/OE.10.001215
  16. B. Tsermaa, K. Myung-Whun, K. H. Lee, and J. S. Kim, 'Sensitivity improvement of SPIDER by applying a crystal dithering technique,' J. Korean Phys. Soc. 54, to be published (2009)
  17. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd revised edition (Springer, Berlin, 1999)
  18. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, 'Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,' Appl. Phys. B 77, 239-244 (2003) https://doi.org/10.1007/s00340-003-1193-8
  19. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. Shreenath, and R. Trebino, 'Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,' Opt. Lett. 27, 1174-1176 (2002) https://doi.org/10.1364/OL.27.001174
  20. Z. Zhu and T. G. Brown, 'Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,' Opt. Exp. 12, 791-796 (2004) https://doi.org/10.1364/OPEX.12.000791
  21. B. Tsermaa, J. S. Kim, and B. K. Yang, 'Construction of a broad-band optical isolator by using an achromatic circular polarizer,' J. Korean Phys. Soc. 48, 892-896 (2006)

Cited by

  1. Suspended Ring-Core Photonic Crystal Fiber Gas Sensor With High Sensitivity and Fast Response vol.7, pp.1, 2015, https://doi.org/10.1109/JPHOT.2015.2396121
  2. Cross-correlation frequency-resolved optical gating of white-light continuum (500–900 nm) generated in bulk media by 1053 nm laser pulses vol.13, pp.6, 2016, https://doi.org/10.1088/1612-2011/13/6/066101
  3. Intensity–phase characterization of white-light continuum generated in sapphire by 280 fs laser pulses at 1053 nm vol.14, pp.3, 2012, https://doi.org/10.1088/2040-8978/14/3/035201
  4. Single-shot measurement of the complete temporal intensity and phase of supercontinuum vol.1, pp.2, 2014, https://doi.org/10.1364/OPTICA.1.000119
  5. Pulse compression of white-light continuum generated at 1053 nm in bulk sapphire: an experimental study vol.15, pp.11, 2018, https://doi.org/10.1088/1612-202X/aadf60