Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.3.207

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application  

Maji, Partha Sona (Department of Physics & Meteorology, Indian Institute of Technology)
Chaudhuri, Partha Roy (Department of Physics & Meteorology, Indian Institute of Technology)
Publication Information
Journal of the Optical Society of Korea / v.18, no.3, 2014 , pp. 207-216 More about this Journal
Abstract
In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.
Keywords
Photonic Crystal Fiber (PCFs); Birefringence; Dispersion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 CUDOS MOF utilities available online: http://www.physics. usyd.edu.au/cudos/mofsoftware/
2 J. Im, J. Kim, U. C. Paek, and B. H. Lee, "Guiding properties of square-lattice photonic crystal fibers," J. Opt. Soc. Korea 9, 140-144 (2005).   과학기술학회마을   DOI   ScienceOn
3 L. R. Chen, "Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror," IEEE Photon. Technol. Lett. 17, 410-412 (2004).
4 L. Yange, L. Bo, F. Xinhuan, Z. Weigang, Z. Guang, Y. Shuzhong, K. Guiyun, and D. Xiaoyi, "High-birefringence fiber loop mirrors and their applications as sensors," Appl. Opt. 44, 2382-2390 (2005).   DOI
5 L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Select. Topics Quantum Electron. 5, 1373-1378 (1999).   DOI   ScienceOn
6 C. McKinstrie, H. Kogelnik, R. Jopson, S. Radic, and A. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033-2055 (2004).   DOI
7 Y. Q. Xu, S. G. Murdoch, R, Leonhardt, and J. D. Harvey, "Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator," J. Opt. Soc. Am. B 26, 1351-1356 (2009).   DOI   ScienceOn
8 M. Guasoni, V. V. Kozlov, and S. Wabnitz, "Theory of polarization attraction in parametric amplifiers based on telecommunication fibers," J. Opt. Soc. Am. B 29, 2710-2720 (2012).   DOI
9 P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, "Cross-phase modulational instability in high-birefringence fibers," Opt. Commun. 78, 137-142 (1990).   DOI   ScienceOn
10 C. Stephane, C. A. H. Lun, L. Rainer, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am B 19, 753-764 (2002).
11 B. T. Kuhlmey, R. C. PcPhedran, and C. M de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002).   DOI
12 P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results," IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975).
13 T. P. White, B. T. Kuhlmey, R. C. PcPhedran, D. Maystre, G. Renversez, C. M de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).   DOI   ScienceOn
14 B. T. Kuhlmey, T. P. White, R. C. PcPhedran, D. Maystre, G. Renversez, C. M de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. II. Implementataion and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).   DOI   ScienceOn
15 B. T. Kuhlmey, R. C. PcPhedran, C. M de Sterke, P. A. Robinson, G. Remversez, and D. Maystre, "Microstructured optical fibers: Where's the edge?," Opt. Express 10, 1285-1290 (2002).   DOI
16 F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, "Single mode regime of square-lattice photonic crystal fibers," J. Opt. Soc. A 22, 1655-1661 (2005).   DOI   ScienceOn
17 P. S. Maji and P. R. Chaudhuri, "A new design of ultraflattened near-zero dispersion PCF using selectively liquid infiltration," Photonics and Optoelectronics 2, 24-31 (2013).
18 F. Poli, A. Cucinotta, M. Fuochi, and S. Selleri, "Characterization of microstructured optical fibers for wideband dispersion compensation," J. Opt. Soc. Am. B 20, 1958-1962 (2003).   DOI   ScienceOn
19 J. C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007).   DOI   ScienceOn
20 J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, A. Tunnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715-2720 (2006).   DOI
21 S. Fabian, J. Florian, E. Tino, S. Alexander, J. Cesar, L. Jens, and T. Andreas, "High average power large-pitch fiber amplifier with robust single-mode operation," Opt. Lett. 36, 689-691 (2011).   DOI   ScienceOn
22 K. Mondal and P. Roy Chaudhuri, "Designing high performance Er+3 doped fiber amplifier based on triangular lattice photonic crystal fiber," Optics and Laser Technology 43, 1436-1441 (2011).   DOI   ScienceOn
23 S. K. Varshney, K. Saitoh, M. Koshiba, B. P. Pal, and R. K. Sinha, "Design of S-band Erbium-doped, concentric dual-core photonic crystal fiber amplifiers with ASE and SRS suppression," J. Lightwave Technol. 27, 1725-1733 (2009).   DOI   ScienceOn
24 S. Roy and P. R. Chaudhuri, "Supercontinuum generation in visible to mid infrared region in square -lattice photonic crystal fiber made from highly nonlinear glasses" Opt. Commun. 282, 3448-3455 (2009).   DOI   ScienceOn
25 A. Baili, R. Cherif, and M. Zghal, "New design of As2Se3-based chalcogenide photonic crystal fiber for ultrabroadband, coherent, mid-IR supercontinuum generation," Proc. SPIE 8564, 856409-1 (2012).
26 B. J. Eggleton, B. Luther-Davies, and K. Richardson, "Chalcogenide photonics," Nature Photonics 5, 141-148 (2011).   DOI
27 A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, "Disperson properties of square-lattice photonic crystal fibers," Opt. Express 12, 941-946 (2004).   DOI
28 J. H. Liou, S. S. Huang, and C. P. Yu, "Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers," Opt. Commun. 283, 971-974 (2010)   DOI   ScienceOn
29 T. Y. Cho, G. H. Kim, K. Lee, and S. B. Lee, "Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties," J. Opt. Soc. Korea 12, 19-24 (2008).   과학기술학회마을   DOI   ScienceOn
30 T. P. Hansen, J. Broeng, S. E. B. Libori, E. Enudsen, A. Bjarklev, J. R. Jensen, and H. Simpson, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).   DOI   ScienceOn
31 S. G. Lee, S. D. Lim, K. Lee, and S. B. Lee, "Broadband single-polarization single-mode operation in highly birefringent photonic crystal fiber with a depressed-index core," Jpn. J. Appl. Phys. 49, 12 (2010).
32 P. S. Maji and P. Roy Chaudhuri, "Tunable selective liquid infiltration: Applications to low loss birefringent photonic crystal fibers (PCF) and its single mode realization," Journal of Photonics and Optoelectronics 2, 27-37 (2014).
33 T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber." Opt. Lett. 22, 961-963 (1997).   DOI   ScienceOn
34 J. M. Dudley and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics 3, 85-90 (2009).   DOI
35 B. Kuhlmey, G. Renversez, and D. Maystre, "Chromatic dispersion and losses of microstructured optical fibers," Appl. Opt. 42, 634-639 (2003).   DOI
36 B. Dong, Q. Zhao, F. Lvjun, T. Guo, L. Xue, S. Li, and H. Gu, "Liquid-level sensor with a high-birefringence-fiber loop mirror," Appl. Opt. 45, 7767-7771 (2006).   DOI
37 J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjakle, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Tech. 5, 305-330 (1999).   DOI   ScienceOn
38 J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).   DOI   ScienceOn
39 S. A. Cerqueira Jr., "Recent progress and novel applications of photonic crystal fibers," Rep. Prog. Phys. 73, 1-21 (2010).
40 A. Ortigoss-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, and P. St. J. Russel, "Highly birefringent photonic crystal fiber," Opt. Lett. 25, 1325-1327 (2000).   DOI
41 J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, "A single-polarization fiber," J. Lightwave Technol. LT-1, 370-374 (1983).
42 H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single-polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).   DOI   ScienceOn
43 P. Roychoudhuri, V. Poulose, C. Zhao, and C. Lu, "Near elliptic core polarization maintaining photonic crystal fiber: Modeling birefringence characteristics and realization," IEEE Photon. Techol. Lett. 16, 1301-1303 (2004).   DOI   ScienceOn
44 M. J. Steel and R. M. Osgood Jr., "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001).   DOI   ScienceOn
45 K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).   DOI   ScienceOn
46 K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001).   DOI
47 S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia, "Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror," IEEE Photon. Technol. Lett. 17, 1387-1389 (2005).   DOI   ScienceOn
48 N. S. Platonov, D. V. Gapontsev, V. P. Gapontsev, and V. Shumilin, "135W CW fiber laser with perfect single mode output," in Proc. Conference on Lasers and Electro-Optics (CLEO, Long Beach, California, United States, May 2002), vol. 2, pp. CPDC3-1-CPDC3-4.