• Title/Summary/Keyword: photomixotrophic

Search Result 12, Processing Time 0.034 seconds

Effects of Dykellic Acid Derived from Microorganism on the Cell Growth and Superoxide Dismutase Activity in Tobacco Photomixotrophic Cultured Cells (미생물 유래 Dykellic Acid가 담배 녹색배양세포의 생장 및 Superoxide Dismutase 활성에 미치는 영향)

  • 곽상수;권혜경;권석윤;이행순;이호재;고영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.133-136
    • /
    • 2000
  • To evaluate the biological effects of dykellic acid, a novel apoptosis inhibitor, isolated from microorganism on the plant cells, the cell growth, protein contents, and superoxide dismutase (SOD) activity were investigated in suspension cultures of tobacco photomixotrophic cultured (PM) cells on 12 days after different concentration of chemical treatment. The cells were cultured in MS medium containing 0.7 mg/L 2,4-D, 0.3 mg/L kinetin, 30 g/L sucrose and 200 mM NaCl at $25^{\circ}C$ in the light (100 rpm). Dykellic acid strongly inhibited the cell growth by evaluating the cell fresh wt and the ion conductivity in the medium ($IC_{50}$/, about 20 $\mu$M). The results as inhibition of cell growth and cell wall damage were same. The compound significantly increased the protein contents and the SOD specific activity in proportion with the dosage. The results suggested that dykellic acid may have biological activity in plant cells and tobacco PM cells may be suitable biomaterials for in vitro evaluation of the biological activity of natural products.

  • PDF

Improvement of Growth of Potato (Solanum tuberosum L. cv. Dejima) Plants at In Vitro and Ex Vitro and Energy Efficiency by Environmental Control with Growth Stage in Photoautotrophic Micropropagation System (광독립영양 기내 미세증식 시스템에서 생육단계별 환경조절을 통한 감자의 기내 및 기외 생육과 에너지 효율 향상)

  • Oh, Myung-Min;Lee, Hoon;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • This study was conducted to evaluate the effect of optimized environment conditions with growth stage in photoautotrophic micropropagation on the growth of potato (Solanum tuberosum L. cv. Dejima) plantlets and energy efficiency. Optimum environment conditions at each stage were decided in our previous study. For the evaluation of optimized environment control, potato plantlets were cultured under four different conditions: photoautotrophic optimum conditions of photosynthetic photon flux density (PPFD) and $CO_2$ levels with growth stage (POG), photoautotrophic constant condition with average PPFD and $CO_2$ levels (PCA), photoauototrophic constant condition with maximum PPFD and $CO_2$ levels (PCM), and photomixotrophic conventional condition with 3% sucrose (PMC) as control. As a result, environment control with growth stage (POG) significantly promoted all the growth characteristics such as the number of nodes and unfolded leaves, shoot height, shoot diameter, and fresh and dry weights of potato grown in vitro. In addition, based on dry weight consumed electricity and $CO_2$ were the lowest in POG suggesting the highest energy efficiency among the treatments. After transferring potato plantlets to greenhouse, the plantlets under POG showed vigorous growth, which was pretty similar with those under PMC. The accumulations of dry matter in POG were 4.7 times in vitro and 3.8 times in greenhouse as much as those in the conventional control (PCM). Thus, we concluded that in vitro environment control with growth stage induced vigorous growth of potato plantlets both in vitro and in greenhouse with less energy consumption.

Responses of Tobacco Photomixotrophic Cultured Cells to Various Herbicides (다양한 제초제에 대한 담배 Photomixotrophic 배양세포의 반응)

  • 권혜경;권석윤;이행순;윤의수;김진석;조광연;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.183-187
    • /
    • 1999
  • To establish an efficient screening system for new herbicides using plant cultured cells, responses of tobacco photomixotrophic cultured (PH) cells to various herbicides with different modes of action were surveyed by measuring the cell growth and ion conductivity in medium. The cells were cultured in Murashige and Skoog (MS) medium containing 0.7mg/L 2,4-D, 0.3mg/L kinetin and 30 g/L sucrose at $25^{\circ}C$ in the light (100 rpm). Chemicals were treated to suspension cultures of tobacco PH cells at the time of subculture. The cell growth and ion conductivity in the medium were investigated on 12 days after chemical treatment. The ion conductivity assay gave well correlated results to the cell growth inhibition data. The responses of tobacco PM cells were dependent on the modes of action of chemicals tested. Atrazine, an inhibitor of photosynthetic electron transport (PET), strongly inhibited both the cell membrane and cell growth ($IC_{50}$/, about 1 $\mu$M). Butachlor (an inhibitor of cell division), glufosinate (an inhibitor of amino acid biosynthesis), and fluridone (an inhibitor of carotenoid biosynthesis) showed a dose-dependent inhibition. However, Quinclorac, a herbicide with an auxin activity, did not affect the cell growth and ion leakage. These results suggested that tobacco PM cells is suitable materials for the simple screening of new herbicides such as PET, amino acid biosynthesis, ceil division inhibitors by measuring the cell growth and ion conductivity.

  • PDF

Photomixotrophic Growth of Solanum tuberosum L. in vitro with Addition and Omission of Organic Materials at Thee Initial Sucrose Levels in the Medium (세 수준의 자당이 첨가된 배지에서 유기물의 첨가 유무에 따른 Solanum tuberosum L.의 기내 광혼합영양생장)

  • Jeong, Byoung-Ryong;Yang, Chan-Suk;Kim, Gyeong-Hee;Park, Young-Hoon;Kozai, Toyoki
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.51-55
    • /
    • 2004
  • The most commonly used inorganic nutrient compositions such as Murashige & Skoog medium have been optimized for heterotrophic growth. Therefore, they may not be optimal for photomixotrophic and photoautotrophic growth of plantlets. In photomixotrophic micropropagation, emdium sugar level is often lowered, while light and $CO_2$ levels in vessel are raised, and chlorophyllous explants are used to facilitate photosynthetic carbon acquisition. In a factorial experiment effect of addition (+) and omission(_) of organic materials (OM, 0.5 g ${\cdot}$ $m^{-3}$ each of thiamine, nicotinic acid and pyridoxine and 100 ${\cdot}$ $m^{-3}$ myo-inositiol) combined with three sucrose levels (0, 15, and 30 kg ${\cdot}$ $m^{-3}$) was tested on the growth of potato plantlets. Each of nodal cuttings with a leaf was cultured on 0.1${\times}$$10^{-4}m^{-3}$) MS agar ( 8 kg ${\cdot}$ $m^{-3}$) medium (pH 5.80 before autoclave) in glass test tubes (100 mm${\times}$25mm) capped with a sheet of transparent film with a 6 mm diameter gas permeable filter (5.1 air exchanges ${\cdot}$$h^{-1}$). Cultures were maintained in a room for 27 days at $23^{\circ}C$, 50% RH, 350-450${\mu}mol\;{\codt}\;mol^{-1}CO_2$, 16 h ${\cdot}$ $d^{-1}$ photoperiod at 13${\mu}mol\;{\codt}\;m\;{\codt}\;s^{-1}$ PPFD provided by white cool fluorescent lamps. Growth of potato plantlet in the +OM and -OM treatments were similar, while medium pH was 0.2 scale lower in the latter. Dry weight, % dry matter, and stem diameter enhanced, while shoot to root dry weight ratio, leaf area, chlorophyll concentration per gram dry weight, and medium pH decreased with increasing initial sucrose level. Interaction between OM and sucrose levels was observed in shoot length and medium pH. Results indicate that OM can be omitted from the medium without detrimental effect while addition of sucrose was beneficial for the photomixotrophic growth of potato plantlets under raised light and $CO_2$.

A Closed Transplant Production System, A Hybrid of Scaled-up Micropropagation System and Plant Factory

  • Chun, Changhoo;Kozai, Toyoki
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • Photoautotrophic micropropagation systems do not include sugar in the culture media. This characteristic provides advantages to scale up the micropropagation systems comparing photomixotrophic micropropagation systems. A closed, large-scale photoautotrophic micro-propagation for transplant production system has been developed at Chiba University, Japan. New concepts and technologies were adapted to produce high quality transplants at minimum usage of resources, and as scheduled. Newly developed software for production management was used to enhance the efficiency of the transplant production system. Currently, virus-free transplants of sweetpotato (Ipomoea batatas (L.) Lam.) are vegetatively propagated and produced under sterilized conditions in this system. This system can also be used for production of transplants of any other species including horticultural and woody plants with a minimum of modification.

  • PDF

Growth Acceleration and Acclimatization of In Vitro Plantlets derived from Apical Meristem of Sweet Potato (고구마의 경정조직 유래 기내 소식물체의 생장촉진과 순화)

  • ;;Shiro Higashi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.115-119
    • /
    • 1999
  • The single node cuttings of sweet potato (cv. Mokpo #29) plantlets maintained in vitro were cultured with (MF+) or without membrane filter (MF-) under photomixotrophic (PM), hetrotrophic (HT) and autotrophic (AT) conditions. Shoot length was the greatest (11.9cm) in 3$0^{\circ}C$ (HT) treatment and it was the shortest (3.4 cm) in $25^{\circ}C$ (PM) treatment. Nodal explants cultured in 3$0^{\circ}C$ treatment looked more vigorous than those of $25^{\circ}C$ in appearance, and node number was the greatest (10.5 per plantlet) among the treatments. But plantlets grew in 3$0^{\circ}C$ (HT) treatment were observed all overgrown. The size in leaf area was about 2 times greater and shoot length was about 2 times shorter in PM than in HT condition. Percent dry matter of shoots was 5.9% (HT) and 7.4% (PM) in $25^{\circ}C$ treatment and 6.1% (HT) and 7.4% (PM) in 3$0^{\circ}C$ treatment. Plantlets cultured in the MF+ treatments were less succulent than those cultured in the MF- treatment. Vitrified plantlets were examinated 14.8% (both $25^{\circ}C$ and 3$0^{\circ}C$) in PM condition and 22.2% ($25^{\circ}C$) and 31.5% (3$0^{\circ}C$) in HT condition. Sucrose was necessary for the survival of in vitro plantlets. In the sucrose-free medium, explants cultured in the MF- had turned yellow and were dead after 30 days of culture. But explants cultured in the MF+ were alive and produced plantlets with shoot and root (AT). On the other hand, the survival of explants on the MS basal medium (sucrose-free and hormone-free) depended entirely upon the MF attachment.

  • PDF

Identification of a Glucokinase that Generates a Major Glucose Phosphorylation Activity in the Cyanobacterium Synechocystis sp. PCC 6803

  • Lee, Jung-Mi;Ryu, Jee-Youn;Kim, Hyong-Ha;Choi, Sang-Bong;de Marsac, Nicole Tandeau;Park, Youn-Il
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.256-261
    • /
    • 2005
  • In silico analysis of genome of the cyanobacterium Synechocystis sp. PCC 6803 identified two genes, slr0329 and sll0593, that might participate in glucose (Glc) phosphorylation (www.kazusa.or.jp/cyano). In order to determine the functions of these two genes, we generated deletion mutants, and analyzed their phenotypes and enzymatic activities. In the presence of 10 mM Glc, wild-type (WT) and slr0329 defective strain (M1) grew fast with increased respiratory activity and NADPH production, whereas the sll0593 deletion mutant (M2) failed to show any of the Glc responses. WT and M1 were not significantly different in their glucokinase activity, but M2 had 90% less activity. Therefore, we propose that Sll0593 plays a major role in the phosphorylation of glucose in Synechocystis cells.

Screening Method for Photosynthetic Electron Transport Inhibitors Using Photoautotrophic Cultured Cells (광학적 자가영양 배양세포를 이용한 광합성 전자전달억제자의 간이검정방법)

  • 정형진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.245-252
    • /
    • 1993
  • To investigate a simple and rapid screening method for photosynthetic inhibitory herbicides, responses of tobacco(Nicotiana tabacum L.) and liverwort(Marchantia polymorpha L.) PA(photoautotrophic) cells to various commercial herbicides with different modes of action and leaf extracts of four weed species were compared. PET (photosynthetic electron transport) inhibitory type of herbicides has greater inhibitory effect in liverwort photoautotrophic cells than the photomixotrophic and heterotrophic cultured cells. Similary, PET inhibitory type of herbicides inhibited the oxygen evolution more in liverwort PA cells than the other type of herbicides. Based on oxygen evolution, 60% inhibition was observed by the 10% aqueous extracts of Polygonum hydropiper, while there was 100% inhibition by the 10% methanol extracts of Polygonum hydropiper. This assay gave well correlated results to the Hill reaction data using isolated thylakoids. Thus liverwort photoautotrophic cells might be suitable materials for rapid screening method for photosynthetic inhibitory herbicides.

  • PDF

Micropropagation of Sweetpotato (Ipomoea batatas) in a novel $CO_2$-Enriched Vessel

  • Silva Jaime A. Teixeira da;Giang Dam Thi Thanh;Tanaka Michio
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 2005
  • To overcome various disadvantages of conventional cul-ture vessels for micropropagation, a novel disposable vessel, the 'Vitron', made of a multi-layered $OTP^{(R)}$ film and supported by a polypropylene frame, was developed. The film possesses superior properties such as: high light transmittance, low water vapor transmittance and thermal stability and in particular, high gas-permeability. Single nodal explants, which were excised from the multiple shoots derived from shoot-tip culture, were cultured in Vitron and polycarbonate vessels on $3\%$ sugar-containing agar on MS medium and placed at 3000 ppm $CO_2$-enrichment at a low photosynthetic photon flux density (PPFD) ($45{\mu}mol\;m^{-2}\;s^{-1}$). The in vitro and ex vitro growth, and the net photosynthetic rate of in vitro and ex vitro plantlets were significantly enhanced in the Vitron compared to those cultured in a polycarbonate vessel. Explants that were cultured on the same MS medium under low PPFD at various $CO_2$ concentrations were also cultured at 3000 ppm $CO_2$- enrichment at various PPFD: 30, 45, 60, 75 and $90{\mu}mol\;m^{-2}\;s^{-1}$. The best in vitro and ex vitro growth obtained for 3000 ppm $CO_2$-enrichment at $75{\mu}mol\;m^{-2}\;s^{-1}$ PPFD. The novel Vitron vessel, when placed under the two conditions, may replace conventional culture vessels for the successful micropropagation of sweetpotato.

Development of Culture System for Masspropagation and Acclimatization of Tissue Cultured Plantlets (유식물체 증식.순화용 배양시스템 개발)

  • Han, K.S.;Heo, J.W.;Kim, S.C.;Lee, Y.B.;Kim, S.C.;Im, D.H.;Choi, H.G.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.109-114
    • /
    • 2007
  • In mass production of seed-potato plantlets, the processes for in vitro propagation and ex vitro acclimatization with a high cost should be improved by a culture system with environmental control using scaled-up culture vessels. The experiment was conducted to design a hydroponic culture system for enhancement of growth and development of seed-potato (Solanum tuberosum) plantlets cultured under photoautotrophic (without sugar in culture medium) conditions with controlled light intensity and ventilation rate. The culture system was consisted of scaled-up culture vessels, ventilation pipes, a multi-cell tray and an environmental control system (ECS) for optimum controlling in temperature, light intensity, ventilation rate, and culture-medium supply. Growth and development of the plantlets was significantly increased under the ECS compared with a conventional culture system (CCS) of photomixotrophic culture (with sugar in culture medium) using small scale vessels. For 21 days, leaf area of the plantlets was expanded more than 2 times, and number of internodes also approximately 4 times greate. under the ECS. In addition, the photoautotrophic growth in sweetpotato (Ipomoea batatas) and chrysanthemum (Chrysanthemum morifolium) plantlets was greater more than 2 times compared with the CCS.