• 제목/요약/키워드: photocatalysts

검색결과 235건 처리시간 0.03초

Preparation and Characterization and Visible Light Photocatalytic Activity of Fe-Treated AC/TiO2 Composites for Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.621-626
    • /
    • 2009
  • Fe-AC/Ti$O_2$ photocatalysts were prepared by a sol-gel method. The photocatalytic properties of Fe-AC/Ti$O_2$ photocatalysts for the purification of water have been investigated. The samples were characterized by scanning electron microscopy (SEM), specific surface area (BET), X-ray diffraction analysis (XRD), and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. It was found that the prepared Fe-AC/Ti$O_2$ composites have an excellent photocatalytic under visible light irradiation. A small amount of Fe ions in the AC/Ti$O_2$ composites could obviously enhance their photocatalytic activity. The high activities of the Fe-AC/Ti$O_2$ composites could be attributed to the results of the synergetic effects of the enhancement of the Fe element, the photocatalytic activity of Ti$O_2$, and the adsorption of AC.

광화학적 수소제조를 위한 나노복합 광촉매의 설계 (Design of Nanocomposite Photocatalysts for Solar Hydrogen Production)

  • 장점석;김현규;이재성
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.415-423
    • /
    • 2007
  • 광촉매에 의한 수소제조는 재생 가능한 물과 태양에너지로부터 직접적으로 수소에너지를 생산할 수 있는 가장 유망한 기술이다. 지난 수십 년간의 연구에도 불구하고, 고효율과 내구성을 가지는 새로운 가시광 광촉매 소재를 개발하는 것에는 여전히 많은 기술적인 과제가 남아있다. 본 총설에서는 광화학적 수소제조를 위한 새로운 광촉매 소재 개발에 있어서 나노복합 소재의 적용에 대하여 논의하고자 한다. 잘 알려진 소재와 기능의 합리적인 조합과 변형은 가시광 조사 하에 높은 광활성을 가지는 우수한 광촉매를 얻기 위한 효과적인 방법이다.

수중 Dibenzothiophene의 광촉매 분해에 관한 연구 (Photocatalytic Degradation of Dibenzothiophene in Aqueous Phase)

  • 조성혜;여석준;김일규
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.527-534
    • /
    • 2011
  • In this research, the photocatalytic degradation of dibenzothiophene (DBT) in $TiO_2$ aqueous suspension has been studied. $TiO_2$ photocatalysts are prepared by a sol-gel method. The dominant anatase-structure on $TiO_2$ particles is observed after calcining the $TiO_2$ gel at $500^{\circ}C$ for 1hr. Photocatalysts with various transition metals (Nd, Pd and Pt) loading are tested to evaluate the effect of transition metal impurities on photodegradation. The photodegradation efficiencies with $TiO_2$ including Pt and Pd are higher than pure $TiO_2$ powder. Also we investigated the applicability of $H_2O_2$ to increase the efficiency of the $TiO_2$ photocatalytic degradation of dibenzothiophene. The degradation efficiency increases with increasing dosage of $H_2O_2$ in the range of 0.01M to 0.1M . The effect of pH is investigated; we obtained the maximum photodegradation efficiency at pH 5. In addition, the intermediate analysis found dihydroxyl -dibenzothiophene as a reaction intermediate of dibenzothiophene during the photodegradation.

수중 Trichloroethylenel의 광촉매 분해특성에 관한 연구 (Photocatalytic Degradation of Trichloroethylene in Aqueous Phase)

  • 조성혜;남주희;김일규
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.555-564
    • /
    • 2011
  • The photocatalytic degradation of trichloroethylene (TCE) in $TiO_2$ aqueous suspension has been studied. $TiO_2$ photocatalysts are prepared by a sol-gel method. The dominant anatase-structure on $TiO_2$ particles is observed after calcining the $TiO_2$ get at $500^{\circ}C$ for 1hr. The Langmuir-Hinshelwood model is applicable to describe the photodegradation, which indicates that adsorptionof the solute on the surface of $TiO_2$ particles plays an important role in photodegradation. Photocatalysts with various transition metals (Nd, Pd and Pt) loading are tested to evaluate the effect of transition metal impurities on photodegradation. The photodegradation efficiencies with $TiO_2$ including Pt, Pd and Nd are lower than pure $TiO_2$ powder. The effect of pH is investigated and the maximum photodegradation efficiency is obtained at pH 7. In addition, the intermediates such as dichloromethane, chloroform, and trichloroethane are detected during the photodegradation of TCE.

High Photocatalytic Activity of Gd2O2S:Tb Modified Titanium Dioxide Films

  • Kim, Bum-Goo;Lee, Hak-Guen;Kim, Hee-Sung;Kim, Young-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.675-678
    • /
    • 2009
  • $Fe_2O_3,\;Ag_2O,\;CaWO_4$ and $Gd_2O_2S$:Tb loaded on titanium dioxide photocatalysts (P25, Degussa) were prepared by a calcination. Their composite films containing water-born polyurethane used as a material for immobilization were obtained by spray coating technique. The photocatalytic activity of the titanium dioxide films was characterized by decrease of UV-vis absorption spectra for methylene blue and gas chromatography for photocatalytic decomposition of formaldehyde diluted in water. It was shown that the $Gd_2O_2S$:Tb modified titanium dioxide films had good photocatalytic properties and followed the first-order kinetic model with regard to photocatalytic decoloration of methylene blue. Especially in formaldehyde photodegradation experiment, decrease rate of concentration of the titanium dioxide films with $Gd_2O_2S$:Tb modifying was about 35% larger than that of the unloaded titanium dioxide film.

Degradation of a Refractory Organic Contaminant by Photocatalytic Systems

  • Kim, Il-Kyu
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.133-139
    • /
    • 2014
  • In this research, the photocatalytic degradation of benzothiophene in $TiO_2$ aqueous suspension has been studied. $TiO_2$ photocatalysts are prepared by a sol-gel method. The dominant anatase-structure on $TiO_2$ particles is observed after calcining the $TiO_2$ gel at $500^{\circ}C$ for 1hr. Photocatalysts with various transition metals (Nd, Pd and Pt) loading are tested to evaluate the effect of transition metal impurities on photodegradation. The photocatalytic degradation in most cases follows first-order kinetics. The maximum photodegradation efficiency is obtained with $TiO_2$ dosage of 0.4g/L. The photodegradation efficiency with Pt-$TiO_2$ is higher than pure $TiO_2$ powder. The optimal content value of Pt is 0.5wt.%. Also we investigate the applicability of $H_2O_2$ to increase the efficiency of the $TiO_2$ photocatalytic degradation of benzothiophene. The optimal concentration of $H_2O_2$ is 0.05. The effect of pH is investigated; we obtain the maximum photodegradation efficiency at pH 9. Hydroxy-benzothiophenes and dihydroxy-benzothiophenes are identified as reaction intermediates. It is proposed that benzothiophene is oxidized by OH radical to sequentially form hydroxyl-benzothiophenes, dihydroxybenzothiophenes, and benzothiophenedione.

졸-겔법으로 제조된 $xTiO_2$-$ySiO_2$ 분말에 의한 유기물의 광분해 (Photocatalytic Degradation of Organic Compounds over $xTiO_2$-$ySiO_2$ Powders Prepared by Sol-Gel Method)

  • 양천회;이봉철
    • 한국응용과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.130-136
    • /
    • 2008
  • $xTiO_2$-$ySiO_2$ system photocatalysts were developed by sol-gel method based on the change of production parameters, and their structure of crystallization and the specific surface area were measured. Considering the efficiency of the ethanol and phenol degradation using the catalyst, the conclusions were obtained as follows: By means of X-ray analysis of $xTiO_2$-$ySiO_2$ powder that is obtained from Titanium and Silicon alkoxide by sol-gel process, it is shown that crystal structure of anatase type is a dominating structure and, on the other hand, the structure of rutile also partly exists. The increase of $SiO_2$ contents causes the decrease of the degree of crystallization of the gel, whereas the specific surface area preferentially increases. It is shown that more than 90% of ethanol and phenol are degraded when reaction time is about three and an hours, and the maximum degradation rate of ethanol and phenol is shown in $60TiO_2$-$40SiO_2$ catalyst.

Synthesis and Characterization of Fe-fullerene/TiO2 Photocatalysts Designed for Degradation of Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.674-682
    • /
    • 2010
  • Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) solution. XRD patterns of the composites showed that the Fe-fullerene/$TiO_2$ composite contained a typical single and clear anatase phase. The surface properties shown by SEM present a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong Fe peaks for the Fe-fullerene/$TiO_2$ composite. From the photocatalytic results, the excellent activity of the Fe-fullerene/$TiO_2$ composites for degradation of methylene blue under UV light irradiation could be attributed to both the effects between photocatalytic reaction of the supported $TiO_2$, decomposition of the organometallic reaction by the Fe compound and energy transfer effects such as electron and light of the fullerene.

Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity

  • Wang, Huiqin;Wu, Dongyao;Liu, Chongyang;Guan, Jingru;Li, Jinze;Huo, Pengwei;Liu, Xinlin;Wang, Qian;Yan, Yongsheng
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.164-174
    • /
    • 2018
  • The purpose of this work designed hybrid-structured and plasma effect photocatalyst of $Ag/In_2O_3/TiO_2/HNTs$ via sol-gel and photo-reduction methods. The structures, morphologies, optical and photoelectric performances of as-prepared photocatalysts were characterized via XRD, TEM, XPS, BET, UV-vis DRS, PL and photocurrents. The photocatalytic activity was evaluated by degradation of TC. The results showed that the hybrid-structure and plasma effect can effectively cause the multi-transfer of electrons and increase the separation rate of electron and hole pairs which obtained high photocatalytic activity. The photocatalytic degradation processes reveal that $^{\bullet}O_2{^-}$ and $h^+$ are major active species.

P와 B 이온이 함유된 나노 티타니아 광촉매의 광 전기화학적 수소 제조 성능 (Photo-Electrochemical Hydrogen Production Over P- and B- Incorporated $TiO_2$ Nanometer Sized Photo-Catalysts)

  • 곽병섭;최희찬;우재욱;이주승;안준범;류시경;강미숙
    • 청정기술
    • /
    • 제17권1호
    • /
    • pp.78-82
    • /
    • 2011
  • 본 연구에서는 보다 효율적인 광 전기화학적 수소제조를 위하여 광촉매로써 티타니아 골격에 positive-type 반도체로써 B 이온, negative-type 반도체로써 P 이온을 삽입하여 고온 고압에서 용매열(solvothermal)법으로 P- 그리고 B-$TiO_2$ 나노 입자를 제조하였다. 제조한 P-$TiO_2$와 B-$TiO_2$의 물리적 특성은 X-ray 회절분석법, 투과전자현미경, 자외선-가시선 분광광도계, 발광분광계를 통해 확인하였다. 메탄올/물(1:1) 광분해 수소제조 실험 결과, 1.0 mol% B-$TiO_2$ 광촉매가 순수 anatase $TiO_2$ 광촉매 보다 활성이 향상되었으며, 0.5 g의 1.0 mol% B-$TiO_2$ 촉매를 사용한 경우 10시간 반응 시 0.42 mL의 수소가 발생되었다.