DOI QR코드

DOI QR Code

Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity

  • Wang, Huiqin (School of Energy and Power Engineering, Jiangsu University) ;
  • Wu, Dongyao (Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University) ;
  • Liu, Chongyang (Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University) ;
  • Guan, Jingru (Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University) ;
  • Li, Jinze (Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University) ;
  • Huo, Pengwei (Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University) ;
  • Liu, Xinlin (School of Energy and Power Engineering, Jiangsu University) ;
  • Wang, Qian (School of Energy and Power Engineering, Jiangsu University) ;
  • Yan, Yongsheng (Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University)
  • Received : 2018.03.03
  • Accepted : 2018.06.25
  • Published : 2018.11.25

Abstract

The purpose of this work designed hybrid-structured and plasma effect photocatalyst of $Ag/In_2O_3/TiO_2/HNTs$ via sol-gel and photo-reduction methods. The structures, morphologies, optical and photoelectric performances of as-prepared photocatalysts were characterized via XRD, TEM, XPS, BET, UV-vis DRS, PL and photocurrents. The photocatalytic activity was evaluated by degradation of TC. The results showed that the hybrid-structure and plasma effect can effectively cause the multi-transfer of electrons and increase the separation rate of electron and hole pairs which obtained high photocatalytic activity. The photocatalytic degradation processes reveal that $^{\bullet}O_2{^-}$ and $h^+$ are major active species.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province, China Postdoctoral Science Founsation

References

  1. S.Y. Lee, S.J. Park, J. Ind. Eng. Chem. 19 (2013) 1761. https://doi.org/10.1016/j.jiec.2013.07.012
  2. H. Abdullah, Md M.R. Khan, H.R. Ong, J. $CO_2$ Util. 22 (2017) 15. https://doi.org/10.1016/j.jcou.2017.08.004
  3. Z. Geng, Y. Zhang, X. Yuan, M.X. Huo, Y.H. Zhao, Y. Lu, Y. Qiu, J. Alloys Compd. 644 (2015) 734. https://doi.org/10.1016/j.jallcom.2015.05.075
  4. H.M. El-Bery, Y. Matsushita, A. Abdel-moneim, Appl. Surf. Sci. 423 (2017) 185. https://doi.org/10.1016/j.apsusc.2017.06.130
  5. F. Chen, P. Ho, R. Ran, W.M. Chen, Z.C. Si, X.D. Wu, D. Weng, Z.H. Huang, C. Lee, J. Alloys Compd. 714 (2017) 560. https://doi.org/10.1016/j.jallcom.2017.04.138
  6. L. Yang, Y.Y. Yu, J.L. Zhang, F. Chen, X. Meng, Y. Qiu, Y. Dan, L. Jiang, Appl. Surf. Sci. 434 (2018) 796. https://doi.org/10.1016/j.apsusc.2017.10.176
  7. Y.J. Li, H.R. Yang, J. Tian, X.L. Hu, H.Z. Cui, RSC Adv. 7 (2017) 11503. https://doi.org/10.1039/C7RA00011A
  8. X.L. Yao, L. Chen, M.Y. Liu, D.Q. Feng, C.H. Wang, F. Lu, W.H. Wang, X.W. Wang, Y. H. Cheng, H. Liu, H.J. Chen, W.C. Wang, Appl. Catal. B: Environ. 221 (2018) 70. https://doi.org/10.1016/j.apcatb.2017.08.087
  9. S.A. Rawool, M.R. Pai, A.M. Banerjee, A. Arya, R.S. Ningthoujam, R. Tewari, R. Rao, B. Chalke, P. Ayyub, A.K. Tripathi, S.R. Bharadwaj, Appl. Catal. B: Environ. 221 (2018) 443. https://doi.org/10.1016/j.apcatb.2017.09.004
  10. Y.F. Shen, C. Zhang, C.G. Yan, H.Q. Chen, Y.J. Zhang, Chin. Chem. Lett. 28 (2017) 1312. https://doi.org/10.1016/j.cclet.2017.04.004
  11. G.D. Jiang, X.X. Yang, Y. Wu, Z.W. Li, Y.H. Han, X.D. Shen, Mol. Catal. 432 (2017) 232. https://doi.org/10.1016/j.mcat.2016.12.026
  12. M.A. Gondal, M.A. Dastageer, L.E. Oloore, U. Baig, J. Photochem. Photobiol. A: Chem. 343 (2017) 40. https://doi.org/10.1016/j.jphotochem.2017.04.016
  13. H.R. Liu, X. He, Y.C. Hu, X.G. Liu, H.S. Jia, B.S. Xu, Mater. Lett. 131 (2014) 104. https://doi.org/10.1016/j.matlet.2014.05.182
  14. X.Z. Bu, B.Z. Wu, T. Long, M.Z. Hu, J. Alloys Compd. 586 (2014) 202. https://doi.org/10.1016/j.jallcom.2013.10.003
  15. Y.L. Xing, W.X. Que, X.T. Yin, Z.L. He, X.B. Liu, Y.W. Yang, J.Y. Shao, L.B. Kong, Appl. Surf. Sci. 387 (2016) 36. https://doi.org/10.1016/j.apsusc.2016.06.057
  16. F. Zhang, X.Y. Li, Q.D. Zhao, Q.Z. Zhang, M. Tade, S.M. Liu, J. Colloid Interface Sci. 457 (2015) 18. https://doi.org/10.1016/j.jcis.2015.06.008
  17. L.Y. Chen, W.D. Zhang, Appl. Surf. Sci. 301 (2014) 428. https://doi.org/10.1016/j.apsusc.2014.02.093
  18. Y.C. Chen, Y.C. Pu, Y.J. Hsu, J. Phys. Chem. C 116 (2012) 2967. https://doi.org/10.1021/jp210033y
  19. G. Cipriani, V.D. Dio, F. Genduso, D.L. Cascia, R. Liga, R. Miceli, G.R. Galluzzo, Int. J. Hydrogen Energy 39 (2014) 8482. https://doi.org/10.1016/j.ijhydene.2014.03.174
  20. L. Liu, J.T. Deng, T.J. Niu, G. Zheng, P. Zhang, Y. Jin, Z.F. Jiao, X.S. Sun, J. Colloid Interface Sci. 493 (2017) 281. https://doi.org/10.1016/j.jcis.2016.11.039
  21. X.C. Zhang, A.D. Tang, Y.R. Jia, Y.T. Wang, H.X. Wang, S.Y. Zhang, J. Alloys Compd. 701 (2017) 16. https://doi.org/10.1016/j.jallcom.2017.01.085
  22. L.M. Song, T.T. Li, S.J. Zhang, Mater. Chem. Phys. 182 (2016) 119. https://doi.org/10.1016/j.matchemphys.2016.07.012
  23. B. Sarma, B.K. Sarma, Appl. Surf. Sci. 410 (2017) 557. https://doi.org/10.1016/j.apsusc.2017.03.154
  24. D.L. Z.F. Jiang, Z.X. Jiang, D. Yan, K. Liu, J.M. Qian, Appl. Catal. B: Environ. 170-171 (2015) 195. https://doi.org/10.1016/j.apcatb.2015.01.041
  25. J.Z. Li, M.J. Zhou, Z.F. Ye, H.Q. Wang, C.C. Ma, P.W. Huo, Y.S. Yan, RSC Adv. 5 (2015) 91177. https://doi.org/10.1039/C5RA17360D
  26. W.N. Xing, L. Ni, X.S. Yan, X.L. Liu, Y.Y. Luo, Z.Y. Lu, Y.S. Yan, P.W. Huo, Acta Phys. Chim. Sin. 30 (2014) 141.
  27. S. Zhong, C.Y. Zhou, X.N. Zhang, H. Zhou, H. Li, X.H. Zhu, Y. Wang, J. Hazard. Mater. 276 (2014) 58. https://doi.org/10.1016/j.jhazmat.2014.05.013
  28. S.S. Tabakova, K.D. Danov, J. Colloid Interface Sci. 336 (2009) 273. https://doi.org/10.1016/j.jcis.2009.03.084
  29. F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie, Y. Deng, Appl. Catal. B: Environ. 200 (2017) 330. https://doi.org/10.1016/j.apcatb.2016.07.021
  30. F. Chen, Q. Yang, J. Sun, F.B. Yao, S.N. Wang, Y.L. Wang, X.L. Wang, X.M. Li, C.G. Niu, D.B. Wang, G.M. Zeng, ACS Appl. Mater. Interfaces 8 (2016) 32887. https://doi.org/10.1021/acsami.6b12278
  31. M. Tahir, B. Tahir, N.A.S. Amin, Z.Y. Zakaria, J. $CO_2$ Util. 18 (2017) 250. https://doi.org/10.1016/j.jcou.2017.02.002
  32. Z.F. Jiang, D.L. Jiang, Z.X. Yan, D. Liu, K. Qian, J.M. Xie, Appl. Catal. B 170-171 (2015) 195. https://doi.org/10.1016/j.apcatb.2015.01.041
  33. N. Lu, C.L. Shao, X.H. Li, F.J. Miao, K.X. Wang, Y.C. Liu, Appl. Surf. Sci. 391 (2017) 668. https://doi.org/10.1016/j.apsusc.2016.07.057
  34. J.B. Mu, B. Chen, M.Y. Zhang, Z.C. Guo, P. Zhang, Z.Y. Zhang, Y.Y. Sun, C.L. Shao, Y. C. Liu, ACS Appl. Mater. Interfaces 4 (2012) 424. https://doi.org/10.1021/am201499r
  35. Q. Zhu, X.H. Hu, M.S. Stanislaus, N. Zhang, R.D. Xiao, N. Liu, Y.N. Yang, Sci. Total Environ. 577 (2017) 236. https://doi.org/10.1016/j.scitotenv.2016.10.170
  36. L.L. Wang, J. Gao, B.F. Wu, K. Kan, S. Xu, Y. Xie, L. Li, K.Y. Shi, ACS Appl. Mater. Interfaces 7 (2015) 27152. https://doi.org/10.1021/acsami.5b09496
  37. Y.Y. Pang, L.J. Song, C.F. Chen, L. Ge, Appl. Surf. Sci. 420 (2017) 361. https://doi.org/10.1016/j.apsusc.2017.05.118
  38. M. Tahir, B. Tahir, N.A.S. Amin, H. Alias, Appl. Surf. Sci. 389 (2016) 46. https://doi.org/10.1016/j.apsusc.2016.06.155
  39. C.Y. Zhou, C. Lai, P. Xu, G.M. Zeng, D.L. Huang, C. Zhang, M. Cheng, L. Hu, J. Wan, Y. Liu, W.P. Xiong, Y.C. Deng, ACS Sustain. Chem. Eng. 6 (2018) 4174. https://doi.org/10.1021/acssuschemeng.7b04584
  40. C.Y. Zhou, C. Lai, D.L. Huang, G.M. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W.P. Xiong, M. Wen, X.F. Wen, L. Qin, Appl. Catal. B: Environ. 220 (2018) 202. https://doi.org/10.1016/j.apcatb.2017.08.055
  41. X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Chemosphere 92 (2013) 925. https://doi.org/10.1016/j.chemosphere.2013.02.066
  42. M.H. Cao, P.F. Wang, Y.H. Ao, C. Wang, J. Hou, J. Qian, J. Colloid Interf. Sci. 467 (2016) 129. https://doi.org/10.1016/j.jcis.2016.01.005
  43. T.Y. Wang, W. Quan, D.L. Jiang, L.L. Chen, D. Li, S.C. Meng, M. Chen, Chem. Eng. J. 300 (2016) 280. https://doi.org/10.1016/j.cej.2016.04.128
  44. B. Gao, Z. Safaei, I. Babu, S. Iftekhar, E. Iakovleva, V. Srivastava, B. Doshi, S.B. Hammouda, S. Kalliol, M. Sillanpaa, J. Photochem. Photobiol. A: Chem. 348 (2017) 150. https://doi.org/10.1016/j.jphotochem.2017.08.037
  45. M.J. Zhou, J.Z. Li, Z.F. Ye, C.C. Ma, H.Q. Wang, P.W. Huo, W.D. Shi, Y.S. Yan, ACS Appl. Mater. Interfaces 7 (2015) 28231. https://doi.org/10.1021/acsami.5b06997
  46. F. Chen, Q. Yang, Y. Zhong, H.X. An, J.W. Zhao, T. Xie, Q.X. Xu, X.M. Li, D.B. Wang, G.M. Zeng, Water Res. 101 (2016) 555. https://doi.org/10.1016/j.watres.2016.06.006
  47. F. Chen, Q. Yang, X.M. Li, G.M. Zeng, D.B. Wang, C.G. Niu, J.W. Zhao, H.X. An, T. Xie, Y.C. Deng, Appl. Catal. B 200 (2017) 330. https://doi.org/10.1016/j.apcatb.2016.07.021
  48. F. Chen, Q. Yang, J. Sun, F.B. Yao, S.N. Wang, Y.L. Wang, X.L. Wang, X.M. Li, C.G. Niu, D.B. Wang, G.M. Zeng, ACS Appl. Mater Interfaces 8 (2016) 32887. https://doi.org/10.1021/acsami.6b12278

Cited by

  1. Catalytic Investigation of Ag Nanostructures Loaded on Porous Hematite Cubes: Infiltrated versus Exteriors vol.4, pp.17, 2018, https://doi.org/10.1002/slct.201900326
  2. The Role of Fluorine in F-La/TiO2 Photocatalysts on Photocatalytic Decomposition of Methanol-Water Solution vol.12, pp.18, 2018, https://doi.org/10.3390/ma12182867
  3. Ce doping TiO2/halloysite nanotubes photocatalyst for enhanced electrons transfer and photocatalytic degradation of Tetracycline vol.30, pp.21, 2019, https://doi.org/10.1007/s10854-019-02268-y
  4. Fabrication of CdO-graphene embedded mesoporous TiO2 composite for the visible-light response and its organic dye remediation vol.55, pp.8, 2020, https://doi.org/10.1080/01496395.2019.1602648
  5. g-C3N4 quantum dots-modified mesoporous CeO2 composite photocatalyst for enhanced CO2 photoreduction vol.31, pp.22, 2020, https://doi.org/10.1007/s10854-020-04568-0
  6. Construction of Indium Oxide/N-Doped Titanium Dioxide Hybrid Photocatalysts for Efficient and Selective Oxidation of Cyclohexane to Cyclohexanone vol.125, pp.36, 2018, https://doi.org/10.1021/acs.jpcc.1c05730
  7. Fabrication and photoelectrochemical sensitivity of N, F-TiO2NTs/Ti with 3D structure vol.172, pp.no.pa, 2018, https://doi.org/10.1016/j.microc.2021.106957