Browse > Article

Design of Nanocomposite Photocatalysts for Solar Hydrogen Production  

Jang, Jum Suk (Eco-friendly Catalysis and Energy Laboratory (NRL), Department of Chemical Engineering/School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH))
Kim, Hyun Gyu (Busan Center, Korea Basic Science Institute (KBSI))
Lee, Jae Sung (Eco-friendly Catalysis and Energy Laboratory (NRL), Department of Chemical Engineering/School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH))
Publication Information
Korean Chemical Engineering Research / v.45, no.5, 2007 , pp. 415-423 More about this Journal
Abstract
Photocatalytic water splitting (PWS) is the most promising technology to produce $H_2$ energy directly from renewable water and solar light. In spite of the remarkable progress made in the last decade, there are still many technical challenges remaining particularly in finding new photocatalytic materials with high efficiency and durability. This article discusses the application of nanocomposite materials in search of new photocatalytic materials for solar hydrogen production from water. It has been demonstrated that smart combination and modification of known materials and functions could be fruitful approach for the purpose.
Keywords
Photocatalysts; Water Splitting; Hydrogen Production; Nanocomposite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kudo, A. and Kato, H., 'Photocatalytic Decomposition of Water into $H_2$ and $O_2$ over Novel Photocatalyst $K_3Ta_3Si_2O_{13}$ with Pillared Structure Consisting of Three $TaO_6$ Chains,' Chem. Lett., 20(9), 867-868(1997)
2 Lee, J. S., 'Photocatalytic Water Splitting under Visible Light with Particulate,' Catal. Survey from Asia, 9(4), 217-227(2004)
3 Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., 'Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,' Science, 293(5528), 269-271(2001)   DOI   ScienceOn
4 White, J. R. and Bard, A. J., 'Electrochemical Investigation of Photocatalysis at CdS Suspensions in the Presence of Methylviologen,' J. Phys. Chem., 89(10), 1947-1954(1985)   DOI
5 Roy, A. M., De, G. C., Sasmal, N. and Bhattacharyya, S. S., 'Determination of the Flatband Potential of Semiconductor Particles in Suspension by Photovoltage Measurement,' Int. J. Hydrogen. Energy, 20(8), 627-630(1995)   DOI   ScienceOn
6 Jang, J. S., Choi, S. H., Shin, N., Yu, C. and Lee, J. S., '$AgGaS_2$-type Photocatalysts for Hydrogen Production under Visible Light: Effects of Post-synthetic $H_2S$ Treatment,' J. Sol. Stat. Chem., 180(3), 1110-1118(2007)   DOI   ScienceOn
7 Tambwekar, S. V. and Subrahmanyam, M., 'Photocatalytic Generation of Hydrogen from Hydrogen Sulfide: An Energy Bargain,' Inter. J. Hydrogen Energy, 22(10-11), 959-965(1997)   DOI   ScienceOn
8 Frank, A. J. and Honda, K., 'Visible-Light-Induced Water Cleavage and Stabilization of n-Type CdS to Photocorrosion with Surface-Attached Polypyrrole-Catalyst Coating,' J. Phys. Chem., 86(11), 1933-1935(1982)   DOI
9 Nojik, A. J., 'p-n Photoelectrolysis Cells,' Appl. Phys. Lett., 29(3), 150-153(1976)   DOI
10 Kojima, I. and Kurahashi, M., 'Application of Asymmetrical Gaussian/Lorentzian Mixed Function for X-ray Photoelectron Curve Synthesis,' J. Electron Spectrosc. Relat. Phenom., 42(2), 177-181(1987)   DOI   ScienceOn
11 Koca, M. and Sahin, M., 'Photocatalytic Hydrogen Production by Direct Sun Light from Sulfide/Sulfite Solution,' Int. J. Hydrogen Energy, 27(4), 363-367(2002)   DOI   ScienceOn
12 Barbeni, M., Pelizzetti, E., Borgarello, E., Serpone, N., Graetzel, M., Balducci, L. and Visca, M., 'Hydrogen from Hydrogen Sulfide Cleavage. Improved Efficiencies via Modification of Semiconductor Particulates,' Inter. J. Hydrogen Energy, 10(4), 249-53(1985)   DOI   ScienceOn
13 Jang, J. S., Hwang, D. W. and Lee, J. S., '$CdS-AgGaS_2$ Photocatalytic Diodes for Hydrogen Production from Aqueous $Na_2S/Na_2SO_3$ Electrolyte Solution under Visible Light (${\lambda}{\geq}420$ nm),' Catal. Today, 120(2), 174-181(2007)   DOI   ScienceOn
14 Fujishima, A. and Honda, K., 'Electrochemical Photolysis of Water at a Semiconductor Electrode,' Nature, 238(5358), 37-38 (1972)   DOI   ScienceOn
15 Wu, J., Lin, J. M., Shu, Y. B. and Sato, T., 'Synthesis and Photocatalytic Properties of Layered $HNbWO_6/(Pt,\;Cd_{0.8}Zn_{0.2}S)$ Nanocomposites,' J. Mater Chem., 11(12), 3343-3347(2001)   DOI   ScienceOn
16 Naman, S. A., Ahwi, S. M. and Al-Emara, K., 'Hydrogen Production from the Splitting of $H_2S$ by Visible Light Irradiation of Vanadium Sulfides Dispersion loaded with $RuO_2$,' Inter. J. Hydrogen Energy, 11(1), 33-38(1986)   DOI   ScienceOn
17 Khaselev, O. and Turner, J. A., 'A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting,' Science, 280(5362), 425-427(1998)   DOI   ScienceOn
18 Linkous, C. A., Muradov, N. Z. and Ramser, S. N., 'Consideration of Reactor Design for Solar Hydrogen Production from Hydrogen Sulfide using Semiconductor Particulates,' Inter. J. Hydrogen Energy, 20(9), 701-709(1995)   DOI   ScienceOn
19 Zou, Z., Ye, J., Sayama, K. and Arakawa, H., 'Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst,' Nature, 414(6864), 625-627(2001)   DOI   ScienceOn
20 Kim, H. G., Jeong, E. D., Borse, P. H., Jeon, S., Yong, K., Lee, J. S., Li, W. and Oh, S. H., 'Photocatalytic Ohmic Layered Nanocomposite for Efficient Utilization of Visible Light Photons,' Appl. Phys. Lett., 89(6), 064103/01-03(2006)
21 Abe, R., Sayama, K., Domen, K. and Arakawa, H., 'A New Type of Water Splitting System Composed of Two Different $TiO_2$ Photocatalysts (Anatase, Rutile) and a $IO_3/I$ Shuttle Redox Mediator,' Chem. Phys. Lett., 344(3-4), 339-344(2001)   DOI
22 Hwang, D. W., Kim, J., Park, T. J. and Lee, J. S., 'Mg-Doped $WO_3$ as a Novel Photocatalyst for Visible Light-Induced Water Splitting,' Catal. Lett., 80(1-2), 53-57(2002)   DOI   ScienceOn
23 Jang, J. S., Ji, S. M., Bae, S. W., Son, H. C. and Lee, J. S., 'Optimization of $CdS/TiO_2$ Nano-Bulk Composite Photocatalysts for Hydrogen Production from $Na_2S/Na_2SO_3$ Aqueous Electrolyte Solution under Visible Light (${\lambda}{\geq}420$ nm),' J. Photochem. Photobiol. A, Chem., 188(1), 112-119(2007)   DOI   ScienceOn
24 Wu, J., Uchida, S., Fujishiro, Y., Yin, S. and Sata, T., 'Synthesis and Photocatalytic Properties of $HTaWO_6/(Pt,TiO_2)$ and $HTaWO_6/(Pt,\;Fe_2O_3)$ Nanocomposites,' Inter. J. Inorg. Mater., 1(3-4), 253-258(1999)   DOI   ScienceOn
25 Jang, J. S., Choi, S. H., Park, H., Choi, W. and Lee, J. S., 'A Composite Photocatalyst of CdS Nanoparticles Deposited on $TiO_2$ Nanosheets,' J. Nanosci. & Nanotech., 6(11), 3642-3646(2006)   DOI   ScienceOn
26 Kim, H. G., Hwang, D. W. and Lee, J. S., 'An Undoped, Single-Phase Oxide Photocatalyst Working under Visible Light,' J. Am. Chem. Soc., 126(29), 8912-8913(2004)   DOI   ScienceOn
27 Hwang, D. W., Kim, H. G., Lee, J. S., Kim, J., Li, W. and Oh, S. H., 'Photocatalytic Hydrogen Production from Water over MDoped $La_2Ti_2O_7$ (M=Cr, Fe) under Visible Light Irradiation (${\lambda}{\geq}420$ nm),' J. Phys. Chem. B, 109(6), 2093-2102(2005)   DOI   ScienceOn
28 Matsumoto, Y., 'Energy Positions of Oxide Semiconductors and Photocatalysis with Iron Complex Oxides,' J. Sol. Stat. Chem., 126(2), 227-234(1996)   DOI   ScienceOn
29 Kim, H. G., Borse, P. H., Choi, W. and Lee, J. S., 'Photocatalytic Nanodiodes for Visible-Light Photocatalysis,' Angew. Chem. Int. Ed., 44(29), 4585-4589(2005)   DOI   ScienceOn
30 Abe, R., Sayama, K. and Sugihara, H., 'Development of New Photocatalytic Water Splitting into $H_2$ and $O_2$ using Two Different Semiconductor Photocatalysts and a Shuttle Redox Mediator $IO^{3-}/I^-$,' J. Phys. Chem. B, 109(33), 16052-16061(2005)   DOI
31 Jang, J. S., Kim, H. G., Reddy, V. R., Bae, S. W., Ji, S. N. and Lee, J. S., 'Photocatalytic Water Splitting over Iron Oxide Nanoparticles Intercalated in $HTiNb(Ta)O_5$ Layered Compounds,' J. Catal., 231(1), 213-222(2005)   DOI   ScienceOn
32 Jang, J. S., Li, W., Oh, S. H. and Lee, J. S., 'Fabrication of $CdS/TiO_2$ Nano-Bulk Composite Photocatalysts for Hydrogen Production from Aqueous $H_2S$ Solution under Visible Light,' Chem. Phys. Lett., 425(4-6), 278-282(2006)   DOI   ScienceOn
33 Inoue, Y., Asai, Y. and Sato, K., 'Photocatalysts with Tunnel Structures for Decomposition of Water. Part 1. $BaTi_4O_9$, a Pentagonal Prism Tunnel Structure, and Its Combination with Various Promoters,' J. Chem. Soc., Faraday Trans., 90(5), 797-802(1994)   DOI
34 Sayama, K., Mukasa, K., Abe, R., Abe, Y. and Arakawa, H., 'Stoichiometric Water Splitting into $H_2$ and $O_2$ using a Mixture of Two Different Photocatalysts and an $IO^{3-}/I^-$ Shuttle Redox Mediator under Visible Light Irradiation,' Chem. Commun., (23), 2416-2417(2001)
35 Domen, K., Kudo, A. and Onishi, T., 'Mechanism of Photocatalytic Decomposition of Water into $H_2$ and $O_2$ over $NiO-SrTiO_3$', J. Catal., 102(1), 92-98(1986)   DOI   ScienceOn
36 Kato, H. and Kudo, A., 'Photocatalytic Activities of $TiO_2$ and $SrTiO_3$ Photocatalysts Codoped with Antimony and Chromium,' J. Phys. Chem. B, 106(19), 5029-5034(2002)   DOI   ScienceOn
37 Sakata, T., in Serpone, N. and Pelizzetti, E.(Ed.), Photocatalysis: Fundamentals and Applications, Wiley, New York(1989)