DOI QR코드

DOI QR Code

Synthesis and Characterization of Fe-fullerene/TiO2 Photocatalysts Designed for Degradation of Methylene Blue

  • Meng, Za-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2009.01.21
  • Published : 2010.07.22

Abstract

Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) solution. XRD patterns of the composites showed that the Fe-fullerene/$TiO_2$ composite contained a typical single and clear anatase phase. The surface properties shown by SEM present a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong Fe peaks for the Fe-fullerene/$TiO_2$ composite. From the photocatalytic results, the excellent activity of the Fe-fullerene/$TiO_2$ composites for degradation of methylene blue under UV light irradiation could be attributed to both the effects between photocatalytic reaction of the supported $TiO_2$, decomposition of the organometallic reaction by the Fe compound and energy transfer effects such as electron and light of the fullerene.

Keywords

References

  1. E. Piera, M. I. Tejedor, M. E. Zorn, and M. A. Anderson, Appl. Catal. B: Environ. 47, 219 (2004). https://doi.org/10.1016/j.apcatb.2003.09.010
  2. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B103, 2188 (1999).
  3. C. G. Silva, W. Wang, and J. L. Faria, J. Photochem. Photobiol., A: Chem. 181, 314 (2006). https://doi.org/10.1016/j.jphotochem.2005.12.013
  4. V. Shah, P. Verma, P. Stopka, J. Gabriel, P. Baldrian, and F. Nerud, Appl. Catal. B: Environ. 46, 275 (2003).
  5. I. K. Konstantinou and T. A. Albanis, Appl. Catal. B: Environ. 42, 319 (2003). https://doi.org/10.1016/S0926-3373(02)00266-7
  6. T. Sauer, G. Cesconeto Neto, H. J. Jose, and R. F. P. M. Moreira, J. Photochem. Photobiol. A: Chem. 149, 147 (2002). https://doi.org/10.1016/S1010-6030(02)00015-1
  7. W. A. Jacoby, P. C. Maness, E. J. Wolfrum, D. M. Blake, and J. A. Fennell, Environ. Sci. Technol. 32, 2650 (1998). https://doi.org/10.1021/es980036f
  8. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  9. A. Fujishima, K. Hashimoto, and T. Watanabe, $TiO_2$ Photocatalysis: Fundamentals and Applications, BKC, Tokyo (1999).
  10. R. L. Ziolli and W. F. Jardim, J. Photochem. Photobiol. A Chem. 147, 205 (2002). https://doi.org/10.1016/S1010-6030(01)00600-1
  11. J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, S. Malato, and J.-V. Weber, Appl. Catal. B: Environ. 53, 127 (2004). https://doi.org/10.1016/j.apcatb.2004.04.017
  12. P. Calza, V. A. Sakkas, C. Medana, C. Baiocchi, A. Dimou, E. Pelizzetti, and T. Albanis, Appl. Catal. B: Environ. 67, 197 (2006). https://doi.org/10.1016/j.apcatb.2006.04.021
  13. D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjines, F. Levy, and V. I. Parvulescu, Appl. Catal. B: Environ. 25, 83 (2000). https://doi.org/10.1016/S0926-3373(99)00123-X
  14. T.Yuranova, R. Mosteco, J. Bandara, D. Laub, and J. Kiwi, J. Mol. Catal. A: Chem. 244, 160 (2006). https://doi.org/10.1016/j.molcata.2005.08.059
  15. X. Zhang, M. Zhou, and L. Lei, Carbon. 44, 325 (2006). https://doi.org/10.1016/j.carbon.2005.07.033
  16. X.-Y. Chuan, M. Hirano, and M. Inagaki, Appl. Catal. B: Environ. 51, 255 (2004). https://doi.org/10.1016/j.apcatb.2004.03.004
  17. C. Minero, G. Marirlla, V. Maurino, and E. Pelizzetti, Langmuir. 16, 2632 (2000). https://doi.org/10.1021/la9903301
  18. C. Wang, D. F. Bahnemann, and J. K. Dohrmann, Chem. Commun. 16, 1539 (2000).
  19. D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B. 56, 9829 (1997). https://doi.org/10.1103/PhysRevB.56.9829
  20. V. Brezova, A. Stasko, K. D. Asmus, and D. M. Guldi, J. Photochem. Photobiol. A: Chem. 117, 61 (1998). https://doi.org/10.1016/S1010-6030(98)00320-7
  21. A. Sclafani, M. N. Mozzanega, and P. Pichat, J. Photochem. Photobiol. A: Chem. 59, 181 (1991). https://doi.org/10.1016/1010-6030(91)87006-H
  22. I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, and P. Falaras, Appl. Catal. B: Environ. 42, 187 (2003). https://doi.org/10.1016/S0926-3373(02)00233-3
  23. I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, and P. Falaras, J. Catal. 220, 127 (2003). https://doi.org/10.1016/S0021-9517(03)00241-0
  24. B. Sun, A. V. Vorontsov, and P. G. Smirniotis, Langmuir. 19, 3151 (2003). https://doi.org/10.1021/la0264670
  25. V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, J. Photochem. Photobiol. A Chem. 148, 233 (2002). https://doi.org/10.1016/S1010-6030(02)00049-7
  26. J. Wang, S. Uma, and K. J. Klabunde, Appl. Catal.B: Environ. 48, 151 (2004). https://doi.org/10.1016/j.apcatb.2003.10.006
  27. B. O'Regan and D. T. Schwartz, J. Appl. Phys. 80, 4749 (1996). https://doi.org/10.1063/1.363412
  28. C. Wang, C. Bottcher, D. W. Bahnemann, and J. K. Dohrmann, J. Mater. Chem. 13, 2322 (2003). https://doi.org/10.1039/b303716a
  29. S. Nahar, K. Hasegawa, and S. Kagaya, Chemosphere. 65, 1976 (2006). https://doi.org/10.1016/j.chemosphere.2006.07.002
  30. S. Nagase and K. Kobayashi, Chem. Phys. Lett. 228, 106 (1994). https://doi.org/10.1016/0009-2614(94)00911-2
  31. L. S. Wang, J. M. Alford, Y. Chai, M. Diener, J. Zhang, S. M. McClure, T. Guo, G. E. Scuseria, and R. E. Smalley, Chem. Phys. Lett. 207, 354 (1993). https://doi.org/10.1016/0009-2614(93)89013-8
  32. Inoue, Y. Kubozono, S. Kashino, Y. Takabayashi, K. Fujitaka, M. Hida, M. Inoue, T. Kanbara, S. Emura, and T. Uruga, Chem. Phys. Lett. 316, 381 (2000). https://doi.org/10.1016/S0009-2614(99)01309-3
  33. Y. Kubozono, H. Maeda, Y. Takabayashi, K. Hiraoka, T. Nakai, S. Kashino, S. Emura, S. Ukita, and T. Sogabe, J. Am. Chem. Soc. 118, 6998 (1996). https://doi.org/10.1021/ja9612460
  34. T. Inoue, Y. Kubozono, K. Hiraoka, K. Mimura, H. Maeda, S. Kashino, S. Emura, T. Uruga, and Y. Nakata, J. Synchrotron Radiat. 6, 779 (1999). https://doi.org/10.1107/S0909049598016288
  35. C. D. Stevenson, J. R. Noyes, and R. Reiter, J. Am. Chem. Soc. 122, 12905 (2000). https://doi.org/10.1021/ja003100d
  36. W. C. Oh, A. R. Jung, and W. B. Ko, Mater. Sci. Eng: C. 29, 1338 (2009). https://doi.org/10.1016/j.msec.2008.10.034
  37. W. C. Oh, A. R. Jung, and W. B. Ko, J. Ceram. Process. Res. 9, 19 (2008).
  38. W. C. Oh, A. R. Jung, and W. B. Ko, J. Ind. Eng. Chem. 13, 1208 (2007).
  39. T. Akiyama, A. Miyazaki, M. Sutoh, I. Ichinose, T. Kunitake, and S. Yamada, Colloids Surf. 169, 137 (2000). https://doi.org/10.1016/S0927-7757(00)00426-X
  40. T. Hasobe, S. Hattori, P. V. Kanmat, and S. Fukuzumi, Tetrahedron. 62, 1937 (2006). https://doi.org/10.1016/j.tet.2005.05.113
  41. B. E. Lawrence, Carbon. 35, 437 (1997). https://doi.org/10.1016/S0008-6223(97)89618-2
  42. B. Sun, M. Li, H. Luo, Z. Shi, and Z. Gu, Electrochim. Acta. 47, 3545 (2002). https://doi.org/10.1016/S0013-4686(02)00355-9
  43. F. Langa, P. Cruz, J. L. Delgado, E. Espildora, M. J. Gomez-Escalonilla, and A. Hoz, J. Mater. Chem. 12, 2130 (2002). https://doi.org/10.1039/b203112b
  44. H. Dang, M. Levitus, and M. A. Garcia-Garibay, J. Am. Chem. Soc. 124, 136 (2002). https://doi.org/10.1021/ja016189b
  45. M. Drees, K. Premaratne, W. Graupner, and J. R. Heflin, Appl. Phys. Lett. 81, 4607 (2002). https://doi.org/10.1063/1.1522830
  46. A. Smontara, A. M. Tonejc, S. Gradecak, A. Tonejc, A. Bilusicand, and J. C. Lasjaunias, Mster. Sci. Eng.:C. 19, 21 (2002). https://doi.org/10.1016/S0928-4931(01)00427-1
  47. F. A. Khalid, O. Beffort, U. E. Klotz, B. A. Keller, P. Gasser, and S. Vaucher, Acta. Mater. 51, 4575 (2003). https://doi.org/10.1016/S1359-6454(03)00294-5
  48. Z. N. Gu, L. Zhang, John L. Margrave, Valery A. Davydov, Aleksandra V. Rakhmanina, Vyacheslav Agafonov, and Valery N. Khabashesku, Carbon. 43, 2989 (2005). https://doi.org/10.1016/j.carbon.2005.06.012
  49. K. J. Fu, P. Zhang, Tom L. Haslett, Martin Moskovits, and X. J. Gu, Chem. Phy. 252, 101 (1996).
  50. Z. H. Li, Z. Q. Liu, Q. Z. Yan, Y. C. Wang, and C. C. Ge, Ra. Metals. 27, 187 (2008). https://doi.org/10.1016/S1001-0521(08)60112-6
  51. D. M. Guldi and M. Prato, Acc. Chem. Res. 33, 695 (2000). https://doi.org/10.1021/ar990144m
  52. W. Y. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem. B. 98, 13669 (1994). https://doi.org/10.1021/j100102a038
  53. C. Y. Wang, C. Bottcher, D. W. Bahnemann, and J. K. Dohrmann, J. Mater. Chem. 13, 2322 (2003). https://doi.org/10.1039/b303716a
  54. M. H. Zhou, J. G. Yu, and B. Cheng, J. Hazard. Mater. B. 137, 1838 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.028
  55. J. A. Navio, J. J. Testa, P. Djedjeian, J. R. Padron, D. Rodriguez, and M. I. Litter, Appl. Catal. A. 178, 191 (1999). https://doi.org/10.1016/S0926-860X(98)00286-5
  56. A. Kumbhar and G. Chumanov, J. Nanoparticle Res. 7, 489 (2005). https://doi.org/10.1007/s11051-005-7529-z
  57. J. Y. Feng, R. S. K. Wong, X. J. Hu, and P. L. Yue, Catal. Today. 98, 441 (2004). https://doi.org/10.1016/j.cattod.2004.08.007
  58. J. W. Shi, J. T. Zheng, Y. Hu, and Y. C. Zhao, Mater. Chem. Phys. 106, 247 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.042
  59. M. I. Litter and J. A. Navio, Photobiol. A. 98, 171 (1996). https://doi.org/10.1016/1010-6030(96)04343-2
  60. S. M. Karvinen, Ind. Eng. Chem. Res. 42, 1035 (2003). https://doi.org/10.1021/ie020358z
  61. Z. Ambrus, N. Balazs, T. Alapi, G. Wittmann, P. Slipos, A. Dombi, and K. Mogyorosi, Appl. Catal. B. 81, 27 (2008). https://doi.org/10.1016/j.apcatb.2007.11.041
  62. J.-M. Herrmann, C. Guillard, and P. Pichat, Catal. Today. 17, 7 (1993). https://doi.org/10.1016/0920-5861(93)80003-J
  63. Z. J. Li, W. Z. Shen, W. S. He, and X. T. Zu, J. Hazard. Mater. 155, 590 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.095
  64. C. Adan, A. Bahamonde, M. Fernandez-Gareia, and A. Martínez-Arias, Appl. Catal. B. 72, 11 (2007). https://doi.org/10.1016/j.apcatb.2006.09.018
  65. W. J. Zhang, Y. Li, S. L. Zhum and F. H. Wang, Chem. Phys. Lett. 373, 333 (2003). https://doi.org/10.1016/S0009-2614(03)00618-3
  66. J. O. Carneiro, V. Teixeira, A. Portinha, L. Dupak, and A. Magalhaes, P. Coutinhu. 78, 37 (2005).