• 제목/요약/키워드: photo-crosslinking agent

검색결과 5건 처리시간 0.024초

새로운 광증감제를 사용한 치과용 광중합형 복합레진의 기계적 특성 (Physical Properties of Light Cured Dental Composite Resin with Novel Photosensitizers)

  • 선금주;이희경
    • 대한치과기공학회지
    • /
    • 제35권4호
    • /
    • pp.313-320
    • /
    • 2013
  • Purpose: The purpose of this study was to know the physical properties of UDMA dental composite resins containing two photosensitizers, PD, DA, as a photosensitizer instead of CQ. We want to know Remaining Double Bond(RDB) of UDMA unfilled resin and diametral tensile strength and flexural strength of composite resin containing PD and DA were compared with those of CQ, most widely used photosensitizer for dental composite resins. Methods: The RDB of UDMA studied by FT-IR spectroscopy increased with irradiation time. The composite resins were tested for their physical properties. The dental composite resins were made with UDMA as a monomer, silanized silica as filler, N,N-dimethylaminoethyl methacrylate (DAEM) as amine initiator, and one of the two kinds of new photosensitizers. Results: The relative RDB of UDMA was in the order: DA > CQ > PD but the physical properties of the composite resins show PD and DA with higher results compared with that containing CQ. The reason for the results is that PD and DA serve not only as a photosensitizer but also as a photo-crosslinking agent. Conclusion: PD and DA show as effective photosensizers, suitable for UDMA dental composite resin compare with a higher efficiency than CQ.

아크릴계 공중합체에서 친수성가교제 특성에 따른 렌즈의 물리적 성질 변화 (Effects of the Content of Hydrophilic Crosslinking agents in Acrylate Copolymers on Physical Properties of Lens)

  • 김기상;심상연
    • 한국응용과학기술학회지
    • /
    • 제36권1호
    • /
    • pp.305-311
    • /
    • 2019
  • 높은 함수율을 갖는 소프트렌즈를 제조하기 위하여 아크릴계 공중합체를 설계, 제조하였다. 공중합체용 모노머로 2-hydroxyethyl methacrylate(HEMA)를 사용하였고 가교제로는 ethylene glycol dimethacrylate(EGDMA), glycerol dimethacrylate(GD) 혹은 glycerol 1,3-diglycerolate diacrylate(GDD)를 이용하여 렌즈를 제조하였다. 함수율 측정결과, 고함수율 렌즈는 기존의 36%에서 46%로 높게 나타났으며 접촉각도 38.6 에서 34.4 로 낮아져 표면 친수성이 높게 나타남을 확인하였다. 인장강도는 가교제의 친수성이 증가함에 따라 0.1MPa 에서 0.08 그리고 0.05 로 감소하였고 전자현미경으로 렌즈의 단면을 확인한 결과 상분리 현상은 나타나지 않았다. 광중합은 Real-time infrared(RTIR)로 측정하였는데 초기 중합 속도가 가교제에 따라 0.6 에서 0.9 로 나타났다.

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

세공충진 음이온 전도성막의 제조 및 이를 이용한 고체알칼리 연료전지 성능 평가 (Pore-filling anion conducting membranes and their cell performance for a solid alkaline fuel cell)

  • 최영우;이미순;박구곤;임성대;양태현;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • AEM which were used for solid alkaline fuel cell(SAFC) were prepared by photo polymerization in method pore-filling with various quaternary ammonium cationic monomers and crosslinkers without an amination process. Their specific thermal and chemical properties were characterized through various analyses and the physico-chemical properties of the prepared electrolyte membranes such as swelling behavior, ion exchange capacity and ionic conductivity were also investigated in correlation with the electrolyte composition. The polymer electrolyte membranes prepared in this study have a very wide hydroxyl ion conductivity range of 0.01 - 0.45S/cm depending on the composition ratio of the electrolyte monomer and crosslinking agent used for polymerization. However, the hydroxyl ion conductivity of the membranes was relatively higher at the whole cases than those of commercial products such as A201 membrane of Tokuyama. These pore-filling membranes have also excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lowest electrolyte crossover through the membranes, and easier preparation process compared of traditional cast membranes. The prepared membranes were then applied to solid alkaline fuel cell and it was found comparable fuel cell performance to A201 membrane of Tokuyama.

  • PDF

전극 표면에 부착된 IPN 형태의 전해질 고분자의 제조 및 그들의 감습특성 (Preparation of IPN-type Polyelectrolyte Films Attached to the Electrode Surface and Their Humidity-Sensitive Properties)

  • 한대상;공명선
    • 폴리머
    • /
    • 제34권6호
    • /
    • pp.565-573
    • /
    • 2010
  • IPN 구조를 가지는 감습성 고분자 전해질로 사용하기 위하여 디브로모알칸과 가교가 가능한 copoly(2-(dimethylamino) ethyl methacrylate)(DAEMA)/butyl acrylate(BA)와 광가교가 가능한 copoly(methyl methacrylate) (MMA)/BA/2-(cinnamoyloxy)ethyl methacryate(CEMA)를 제조하였다. 전극의 기재 표면에 광조사에 의한 IPN-감습성 전해질의 부착을 위하여 3-(triethoxysilyl)propyl cinnamate(TESPC)을 전극표면에 처리하였다. IPN 구조의 감습성 고분자 필름은 copoly(DAEMA/BA), copoly(MMA/BA/CEMA) 및 1,4-dibromobutane(DBB) 가교제의 혼합 용액에 침적한 후에 UV 조사와 동시에 가열하여 제조하였다. IPN-전해질 고분자의 전극 기재와의 부착은 광화학적 $[2{\pi}+2{\pi}]$ 환화반응에 의하여 진행하였다. 얻어진 습도센서는 20~95%RH의 영역에서 매우 높은 감도와 1.5%RH 이하의 작은 히스테리시스를 보여주었다. 또한, 33~94%RH 사이에서 가습과 제습과정의 응답 및 회복 속도는 각각 48초와 65초로 나타나 매우 빠름을 알 수 있었다. 그 밖에 감습액 중의 공중합체의 농도, 가교제의 양, 가교반응 시간 등이 내수성을 포함한 감습성질에 미치는 영향을 조사하였다.