DOI QR코드

DOI QR Code

Effects of the Content of Hydrophilic Crosslinking agents in Acrylate Copolymers on Physical Properties of Lens

아크릴계 공중합체에서 친수성가교제 특성에 따른 렌즈의 물리적 성질 변화

  • Kim, Ki Sang (Department of Biochemical Engineering, College of Engineering, Gangneungwonju National University) ;
  • Shim, Sang-Yeon (Department of Biochemical Engineering, College of Engineering, Gangneungwonju National University)
  • 김기상 (강릉원주대학교 공과대학 생명화학공학과) ;
  • 심상연 (강릉원주대학교 공과대학 생명화학공학과)
  • Received : 2019.03.05
  • Accepted : 2019.03.29
  • Published : 2019.03.31

Abstract

The acrylic copolymer was designed and prepared for soft lens with high content. The copolymers were prepared using 2-hydroxyethyl methacrylate(HEMA) as a monomer and ethylene glycol dimethacrylate(EGDMA), glycerol dimethacrylate(GD), or glycerol 1,3-diglycerolate diacrylate (GDD) as a cross linking agent. The water content for high water content lens was 46%, which was higher compared to general purpose of 36%. The contact angle decreased from 38.6 to 34.4, which appears hydrophilic surface. The tensile strength decreased from 0.1 Mpato 0.08, then again to 0.05 as hydrophilic properties of cross linking agents increased. No phase separation was observed in the cross section of lens using scanning electron microscope. The real-time infrared technique was used in photo-polymerization. The initial polymerization rate increased from 0.6 to 0.9, depending on crosslinking agent.

높은 함수율을 갖는 소프트렌즈를 제조하기 위하여 아크릴계 공중합체를 설계, 제조하였다. 공중합체용 모노머로 2-hydroxyethyl methacrylate(HEMA)를 사용하였고 가교제로는 ethylene glycol dimethacrylate(EGDMA), glycerol dimethacrylate(GD) 혹은 glycerol 1,3-diglycerolate diacrylate(GDD)를 이용하여 렌즈를 제조하였다. 함수율 측정결과, 고함수율 렌즈는 기존의 36%에서 46%로 높게 나타났으며 접촉각도 38.6 에서 34.4 로 낮아져 표면 친수성이 높게 나타남을 확인하였다. 인장강도는 가교제의 친수성이 증가함에 따라 0.1MPa 에서 0.08 그리고 0.05 로 감소하였고 전자현미경으로 렌즈의 단면을 확인한 결과 상분리 현상은 나타나지 않았다. 광중합은 Real-time infrared(RTIR)로 측정하였는데 초기 중합 속도가 가교제에 따라 0.6 에서 0.9 로 나타났다.

Keywords

HGOHBI_2019_v36n1_305_f0001.png 이미지

Scheme 1. Chemical structures of Crosslinkers.

HGOHBI_2019_v36n1_305_f0002.png 이미지

Fig. 1. Effect of crosslinkeron water content.

HGOHBI_2019_v36n1_305_f0003.png 이미지

Fig. 2. Effect of crosslinkeron contact angle.

HGOHBI_2019_v36n1_305_f0004.png 이미지

Fig. 3. Water contact angle profiles of dry cured films, B, GD and GDD.

HGOHBI_2019_v36n1_305_f0005.png 이미지

Fig. 4. Effect of crosslinker on tensile strength.

HGOHBI_2019_v36n1_305_f0006.png 이미지

Fig. 5. Cross-sectional SEM image of hydrogel lens, (a) B (b) GD (C) GDD.

HGOHBI_2019_v36n1_305_f0007.png 이미지

Fig. 6. RTIR curves versus irradiation timeplots for the photo-initiated radicalpolymerization of GD.

HGOHBI_2019_v36n1_305_f0008.png 이미지

Fig. 7. RT-FTIR study of the photo-initiated radical polymerization of GD and GDD.

Table 1. The Feed Ratios of Copolymerization

HGOHBI_2019_v36n1_305_t0001.png 이미지

References

  1. L. Li, B. Yan, J. Yang, W. Huang, L. Chen, H. Zeng, "Injectable self-healing hydrogel with antimicrobial and antifouling properties", ACS Appl. Mater. Interfaces, Vol. 9, No. 11, pp. 9221 (2017). https://doi.org/10.1021/acsami.6b16192
  2. M. Hamidi, A. Azadi, P. Rafiei, "Hydrogel nanoparticles in drug delivery", Adv. Drug Deliv. Rev., Vol. 60, No. 15,pp. 1638 (2008). https://doi.org/10.1016/j.addr.2008.08.002
  3. S.J. Buwalda, K.W.M. Boere, P.J. Dijkstra, W.E. Hennink, "Hydrogels in a historical perspective: from simple networks to smart system materials", J of Cont. Release, Vol. 190, No. 28, pp. 254 (2014). https://doi.org/10.1016/j.jconrel.2014.03.052
  4. A.S. Hoffman, "Hydrogels for biomedical applications", Adv. Drug. Deliv. Rev., Vol. 54, pp. 3 (2002). https://doi.org/10.1016/S0169-409X(01)00239-3
  5. K.H. Bae, L.S. Wang, M. Kurisawa, "Injectable biodegradable hydrogels: progress and challenges", J. Mater. Chem. B, vol. 1, pp. 5371 (2013). https://doi.org/10.1039/c3tb20940g
  6. E. Calo, and V. Khutoryanskiy, "Biomedical applications of hydrogels: a review of patents and commercial products", Eur. Poly. J., Vol 65, pp. 252 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.024
  7. L. Keay, and F. Stapleton, "Development and evaluation of evidence-based guidelines on contact lens-related microbial keratitis", Contact lens and Anter. Eye, Vol. 31, No. 1, pp. 3 (2008). https://doi.org/10.1016/j.clae.2007.10.003
  8. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, "Hydrogels in pharmaceutical formulations", Eur. J. of Phar. and Biopharm., Vol 50, No. 3, pp. 27 (2000). https://doi.org/10.1016/S0939-6411(00)00090-4
  9. A. Kumari, S.K. Yadav, S.C. Yadav, "Biodegradable polymeric nanoparticles based drug delivery systems", Colloid and Surfaces B: Biointer., Vol. 75, No. 1, pp. 1 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.001
  10. L. Mu, and S.S. Feng, "A novel controlled release formulation for the anticancer drug paclitaxel", J. Cont. Release, Vol. 86, No. 1, pp. 33 (2003). https://doi.org/10.1016/S0168-3659(02)00320-6
  11. L.E.V. Vlerken, T.K. Vyas, M.M. Amiji, "Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery", Pharm. Res., Vol. 24, pp. 1405 (2007). https://doi.org/10.1007/s11095-007-9284-6
  12. M.S. Reze, M.A. Quadir, S.S. Haider, "Comparative evaluation of hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery", J. Pharm. Pharma. Sci., Vol. 6, No. 2, pp. 282 (2003).
  13. G.S. Bhusari, S.S. Umare, A.S. Chandure, "Effects of NCO:OH ratio and HEMA on the physical properties of photocurable poly(esterurethane) methacrylate", J. Coating Tech. and Res., Vol. 12, No. 3, pp. 571 (2015). https://doi.org/10.1007/s11998-014-9635-2
  14. M. Basri, S. Samsudin, M.B. Ahmad, "Lipase immobilized on poly(VP-co-HEMA)hydrogel for esterification", Appl. Bio. Chem. and Biotech., Vol. 81, No.3, pp. 205 (1999). https://doi.org/10.1385/ABAB:81:3:205
  15. U. Ojha, D. Feng, A. Chandekar, J.E. Whitten, R. Faust, "Peptide surface modification of p(HEMA-co-MMA)-b-PIB-b-p(HEMA-co-MMA) black copolymers", Langmuir, Vol. 25, No. 11, pp. 8319(2009).
  16. G.S. Sailaja, P. Ramesh, H. Varmas, "Effect of surface functionalization on the physiomechanical properties of a novel biofunctional copolymer", J. of Appl. Poly. Sci., Vol. 121, No. 6, pp. 3509 (2011). https://doi.org/10.1002/app.34157
  17. A-Y Sung, and T-H Kim, "Optical application of poly(HEMA-co-MA) containing silver nano particles and N,N-dimethyl acrylamide", Kor. J. of Chem. Eng., Vol. 29, No.5, pp. 686 (2012). https://doi.org/10.1007/s11814-011-0231-1
  18. J. Bilbruck, G.W. Hanlon, G.P. Martin, "The effects of polyHEMA coating on the adhesion of bacteria to polymer filaments", Int. J. of Pharmaceutics, Vol. 99, No. 2, pp. 293 (1993). https://doi.org/10.1016/0378-5173(93)90372-M
  19. M.I. Burguete, V. Fabregat, F. Galindo, S.V. Luis, "Improved polyHEMA-DAQ films for the optical analysis of nitrite", Eur. Poly. J., Vol. 45, No. 5, pp. 1516 (2009). https://doi.org/10.1016/j.eurpolymj.2009.01.028
  20. C. Decker, and K. Moussa, "Real-time monitoring of ultrafast curing by UV irradiation and laser beams", J. of Coating Tech., Vol. 62, No.786, pp. 55 (1990).