• 제목/요약/키워드: phosphoric acid-doped

검색결과 22건 처리시간 0.031초

Phosphoric Acid-doped SDF-F/poly(VI-co-MPS)/PTFE Membrane for a High Temperature Proton Exchange Membrane Fuel Cell

  • Lee, Jong-Won;Yi, Cheol-Woo;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1902-1906
    • /
    • 2011
  • Sulfonated poly(fluorinated arylene ether)s (SDF-F)/poly[(N-vinylimidazole)-co-(3-methacryloxypropyl-trimethoxysilane)] (poly(VI-co-MPS))/poly(tetrafluoroethylene) (PTFE) is prepared for a high temperature proton exchange membrane fuel cell (PEMFC). The reaction of the membrane with phosphoric acid forms silicate phosphor, as a chemically bound proton carrier, in the membrane. Thus-formed silicate phosphor, nitrogen in the imidazole ring, and physically bound phosphoric acid act as proton carriers in the membrane. The physico-chemical and electrochemical properties of the membrane are investigated by various analytical tools. The phosphoric acid uptake and proton conductivity of the SDF-F/poly(VI-co-MPS)/PTFE membrane are higher than those of SDF-F/PVI/PTFE. The power densities of cells with SDF-F/poly(VI-co-MPS)/PTFE membranes at 0.6 V are 286, 302, and 320 mW $cm^{-2}$ at 150, 170, and 190 $^{\circ}C$, respectively. Overall, the SDFF/poly(VI-co-MPS)/PTFE membrane is one of the candidates for anhydrous HT-PEMFCs with enhanced mechanical strength and improved cell performance.

고온 PEMFC용 메틸렌 사슬을 포함하는 폴리벤즈이미다졸 랜덤 공중합체의 합성과 특성 분석 (Synthesis and Characterization of Polybenzimidazole Random Copolymers Containing Methylene Chain for High Temperature PEMFC)

  • 한다은;유동진
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.578-586
    • /
    • 2018
  • In this study, we prepared the modified PBI random copolymer to reduce the problems of the pristine PBI about low solubility and proton conductivity. The random copolymer was synthesized from suberic acid, 5-aminoisophthalic acid, and 3,3'-diaminobenzidine to obtain $X_1Y_9$, $X_1Y_1$, $X_9Y_1$. Then, the membrane was fabricated by using solvent casting method with methanesulfonic acid at $140^{\circ}C$. Subsequently, the membrane was doped with phosphoric acid at $40^{\circ}C$. The chemical structure of the polymers was characterized by FT-IR. In addition, the physiochemical properties of the PBI were investigated by TGA, oxidative stability, acid uptake. Finally, the proton conductivity was measured at $100-180^{\circ}C$ without humidification. As the result, $X_1Y_9$ PBI random copolymer membrane showed higher conductivity.

Synthesis and Characterization of Polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications

  • Chang, Bong-Jun;Kim, Dong-Jin;Kim, Jeong-Hoon;Lee, Soo-Bok;Joo, Hyeok-Jong
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.43-51
    • /
    • 2007
  • This paper describes the preparation and characterization of two kinds of fluorinated polybenzimidazole (PBI)s which can be potentially used for phosphoric acid-doped, high-temperature polymer electrolyte membrane fuel cells. Two kinds of perfluorocyclobutane (PFCB)-containing monomers were prepared via following synthetic steps; after fluoroalkylation of methyl 3-(hydroxy) benzoate and methyl 4-(hydroxy) benzoate with 1,2-dibromotetrafluoroethane and subsequent Zn-mediated dehalogenation, these compounds were cyclodimerized at $200^{\circ}C$ affording the ester-terminated monomers containing PFCB ether groups. The synthesized intermediates and monomers were characterized using FT-IR, $^1H-NMR,\;^{19}F-NMR$, and mass spectroscopy. The fluorinated PBIs were then successfully prepared through the solution polycondensation of the monomers and 3,3'-diaminobenzidine in polyphosphoric acid. Compared with traditional PBI, the glass transition temperatures of the fluorinated PBIs were obtained at $262^{\circ}C\;and\;269^{\circ}C$ which are lower than that of PBI and their initial degradation temperatures were still high over $400^{\circ}C$ under nitrogen. The fluorinated PBIs showed higher d-spacing values and improved solubility in several organic solvents as well as phosphoric acid, which confirmed they could be good candidates for the high temperature fuel cell membranes.

인산형 연료전지용 고분자 박막 매트릭스 제조 (Manufacture of Thin Polymer Matrix for PAFC)

  • 심재철;은영찬;신동열;이주성
    • 한국표면공학회지
    • /
    • 제29권4호
    • /
    • pp.229-237
    • /
    • 1996
  • Porous matrices for PAFC were prepared with chemically synthesized polyaniline powders. Phosphoric acid doped polyaniline showed decreasing electric conductivities as the temperature increased. Above $100^{\circ}C$, it showed negligible conductivities. It was stable in phosphoric acid up to $250^{\circ}C$. SiC powders or SiC whiskers were added to polyaniline to decrease the thermal expansion of polyaniline. 10% of polytetrafluoroethylene(PTFE) was also added as a binder. The bubble pressures and wettabilities of matrices were investigated and compared with the porosities measured by porosimeter. Based on these data, the optimum manufacturing condition was determined. The bubble pressure of the matrix made by adding 25w/o SiC whiskers was 345mmHg, the wettability was 235w/o, and the porosity was 83%. In the unit cell operation, the performances of polyaniline matrices were as good as those of SiC matrices. This result suggested that polyaniline can be a possible candidate for the matrix material of PAFC.

  • PDF

고온 고분자 연료전지용 인산 도핑 폴리(2,5-벤지이미다졸) 막의 제조 및 특성 (Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells)

  • 쑤언 히엔 니구엔;아난타 쿠마르 미쉬라;최지선;김남훈;이중희
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.26-33
    • /
    • 2012
  • Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.

새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인산 도핑 가능성에 관한 연구 (A Study on Feasibility of the Phosphoric Acid Doping for Solar Cell Using Newly Atmospheric Pressure Plasma Source)

  • 조이현;윤명수;조태훈;권기청
    • 조명전기설비학회논문지
    • /
    • 제27권6호
    • /
    • pp.95-99
    • /
    • 2013
  • Furnace is currently the most important doping process using POCl3 in solar cell. However furnace need an expensive equipment cost and it has to purge a poisonous gas. Moreover, furnace typically difficult appling for selective emitters. In this study, we developed a new atmospheric pressure plasma source, in this procedure, we research the atmospheric pressure plasma doping that dopant is phosphoric acid($H_3PO_4$). Metal tube injected Ar gas was inputted 5 kV of a low frequency(scores of kHz) induced inverter, so plasma discharged at metal tube. We used the P type silicon wafer of solar cell. We regulated phosphoric acid($H_3PO_4$) concentration on 10% and plasma treatment time is 90 s, 150 s, we experiment that plasma current is 70 mA. We check the doping depth that 287 nm at 90 s and 621 nm at 150 s. We analysis and measurement the doping profile by using SIMS(Secondary Ion Mass Spectroscopy). We calculate and grasp the sheet resistance using conventional sheet resistance formula, so there are 240 Ohm/sq at 90 s and 212 Ohm/sq at 150 s. We analysis oxygen and nitrogen profile of concentration compared with furnace to check the doped defect of atmosphere.

인산 도핑 PBI계 막전극접합체를 적용한 고온형 수소연료전지의 전기화학적 내구성 연구 (The Electrochemical Performance Evaluation of PBI-based MEA with Phosphoric Acid Doped Cathode for High Temperature Fuel Cell)

  • 이준기;이찬민;전유권;이홍연;박상선;김태영;김희선;송순호;박정옥;설용건
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.471-480
    • /
    • 2017
  • A proton exchange membrane fuel cell (PEMFC) operated at $150^{\circ}C$ was evaluated by a controlling different amount of phosphoric acid (PA) to a membrane-electrode assembly (MEA) without humidification of the cells. The effects on MEA performance of the amount of PA in the cathode are investigated. The PA content in the cathodes was optimized for higher catalyst utilization. The highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode confirmed by in-situ cyclic voltammetry. The current density-voltage experiments (I-V curve) also shows a transient response of cell voltage affected by the amount of PA in the electrodes. Furthermore, this information was compared with the production variables such as hot pressing and vacuum drying to investigate those effect to the electrochemical performances.

The development of membranes for high temperature PEMFC

  • Lee, Doo-Yeon;Sun, Hee-Young;Cho, Chung-Kun;Lee, Myung-Jin;Seung, Do-Young
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.184-184
    • /
    • 2006
  • We have succeeded in the preparation of high molecular weight polybenzimidazoles by solution polycondensation of 3,3'-diaminobenzidine tetrahydrochloride with isophthalic acid, terephthalic acid, or with their derivatives using polyphosphoric acid both as solvent and as condensing agent. Also, we modified phosphoric acid into fluoroalkyl-phosphonic acids[F-PA]. The main reasons are as follows, first of all F-PAs are stronger acids than PA and alkylphosphonic acids which should promote proton hopping and transport. In addition, F-PA has weaker adsorption onto Pt which help to prevent electrocatalyst poisoning and promote higher oxygen reduction activity. The ionic conductivity of 85%-H3PO4 doped membranes show $10^{-2}\;Scm^{-1}\;to\;3{\times}10^{-2}\;Scm^{-1}\;at\;150^{\circ}C$ MEA with 2 %-added electrolyte shows slightly higher cell voltage than the others.

  • PDF

5 kW 고온 고분자연료전지 스택 수명 극대화를 위한 운전 방법론 (Operating Method to Maximize Life Time of 5 kW High Temperature Polymer Exchange Membrane Fuel Cell Stack)

  • 김지훈;김민진;손영준;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.144-154
    • /
    • 2016
  • HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) using PA (phosphoric acid) doped PBI (polybenzimidazole) membrane has been researched for extending the lifetime. However, the existing work on durability of HT-PEMFC focuses on identifying degradation causes of lab scale. The short life time of HT-PEMFC is still the problem for its commercialization. In this paper, an operating method to maximize life time of 5kW HT-PEMFC stack are proposed. The proposed method includes major steps such as minimization of OCV (Open Circuit Voltage) exposure, control of the proper stack temperature, and N2 purging for the stack. This long life operating method was based on the fragmentary results of degradation from previous research works. Experimentally, the 5 kW homemade HT-PEMFC stack was operated for a long time based on the proposed method and the stack successfully can operate within the desired degradation rate for the target life time.

전기이중층 캐패시터에 관한 폴리머 겔 전해액 (Polymeric Gel Electrolytes for Electric Double Layer Capacitors)

  • Morita, Masayuki;Qiao, Jin-Li
    • 전기화학회지
    • /
    • 제6권2호
    • /
    • pp.141-144
    • /
    • 2003
  • Proton conducting polymeric gels as the electrolytes of electrochemical capacitors have been prepared by two different methods: 1) swelling a polymethacrylate-based polymer matrix in aqueous solutions of inorganic and organic acids, and 2) polymerizing complexes of anhydrous acids and prepolymers with organic plasticizer. The FT-IR spectra strongly suggest that the carbonyl groups in the polymer matrix interact with protons from the doped acids. High ionic (proton) conductivity in the range of $6\times10^{-4}-4\times10^{-2}\;S\;cm^{-1}$ was obtained at room temperature for the aqueous gels. The non-aqueous polymer complexes showed rather low ionic conductivity, but it was about $10^{-3}\;S\;cm^{-1}\;at\;70^{\circ}C$ for the $H_3PO_4$ doped polymer electrolyte. The mechanisms of ion (proton) conduction in the polymeric systems are discussed.