Browse > Article
http://dx.doi.org/10.7316/KHNES.2018.29.6.578

Synthesis and Characterization of Polybenzimidazole Random Copolymers Containing Methylene Chain for High Temperature PEMFC  

HAN, DAEUN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
YOO, DONG JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.29, no.6, 2018 , pp. 578-586 More about this Journal
Abstract
In this study, we prepared the modified PBI random copolymer to reduce the problems of the pristine PBI about low solubility and proton conductivity. The random copolymer was synthesized from suberic acid, 5-aminoisophthalic acid, and 3,3'-diaminobenzidine to obtain $X_1Y_9$, $X_1Y_1$, $X_9Y_1$. Then, the membrane was fabricated by using solvent casting method with methanesulfonic acid at $140^{\circ}C$. Subsequently, the membrane was doped with phosphoric acid at $40^{\circ}C$. The chemical structure of the polymers was characterized by FT-IR. In addition, the physiochemical properties of the PBI were investigated by TGA, oxidative stability, acid uptake. Finally, the proton conductivity was measured at $100-180^{\circ}C$ without humidification. As the result, $X_1Y_9$ PBI random copolymer membrane showed higher conductivity.
Keywords
PBI; Random copolymer; HT-PEMFC; Proton conductivity; Phosphoric acid doped membrane;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 S. Y. Lee and D. J. Yoo, "Comparison of properties of two kinds of anion exchange membranes with different functional group for alkaline fuel cells", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 5, 2018, pp. 458-465.   DOI
2 D. S. Han and D. J. Yoo, "Synthesis and properties of sulfonated poly (arylene ether sulfone) block copolymers with naphthalene moiety for polymer electrolyte fuel cells", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 4, 2018, pp. 331-338.   DOI
3 A. R. Kim, "Synthesis and characterization of fluorinated polybenzimidazole proton exchange membranes for fuel cell", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 1, 2017, pp. 24-29.   DOI
4 J. A. Asensio, E. M. Sanchez, and P. Gomez-Romero, "Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest", RCS Advances, Vol. 39, 2010, pp. 3210-3239.
5 G. Gnana kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, and R. Elizabeth, "High ion and lower molecular trasportation of the poly vinylidene fluoride-hexafluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell application", J. Power Sources, Vol. 195, No. 18, 2010, pp. 5922-5928.   DOI
6 A. R. Kim, "Preparation and characterization of hybrid membrane for block copolymer containing diphenyl unit increasing cationic conductivity for fuel cells", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 5, 2017, pp. 465-470.   DOI
7 X. Li, X. Chen, and B. C. Benicewicz, "Synthesis and properties of phenylindane-containing polybenzimidazole(PBI) for high-temperature polymer electrolyte membrane fuel cells(PEMFCs)", J. Power Sources, Vol. 234, 2013, pp. 796-804.
8 S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. Liu, L. Zhang, and H. Na, "Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 36, 2011, pp. 8412-8421.   DOI
9 H. R. Jang, E. S. Yoo, R. Kannan, J. S. Kim, K. Lee, and D. J. Yoo, "Facile tailor-made enhancement in proton conductivity of sulfonated poly(ether ether ketone) by graphene oxide nanosheet for polymer electrolyte membrane fuel cell applications", Colloid. Polym. Sci., Vol. 6, No. 295, 2017, pp. 1059-1069.
10 J. A. Mader and B. C. Benicewicz, "Synthesis and properties of random copolymers of functionalised polybenzimidazoles for high temperature fuel cells", Fuel Cells, Vol. 11, No. 2, 2011, pp. 212-221.   DOI
11 P. Muthuraja, S. Prakasha, V. M. Shanmugam, S. Radhakrsihnan, and P. Manisankar, "Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: Synthesis and characterizations", Int. J. Hydrogen Energy, Vol. 43, No. 9, 2018, pp. 4763-4772.   DOI
12 X. Li, Z. Liu, J. Peng, C. Shi, W. Hu, Z. Jiang, and B. Liu, "Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells", J. Power Sources, Vol. 393, 2018, pp. 99-107.   DOI
13 D. C. Seel and B. C. Benicewicz, "Polyphenylquino xaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems", J. Membr. Sci., Vol. 405-406, 2012, pp. 57-67.   DOI
14 S. Angioni, P. P. Righetti, E. Quartarone, E. Dilena, P. Mustarelli, and A. Magistris, "Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs", Int. J. Hydrogen Energy, Vol. 36, No. 12, 2011, pp. 7178-7182.
15 S. Anand and A. Muthusamy, "Optical, thermal and electrical properties of polybenzimidazoles derived from substituted benzimidazoles", J. Mol. Struct., Vol. 1148, 2017, pp. 254-265.   DOI
16 A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Sulfonated fluorinated multi-block copolymer hybrid containing sulfonated (poly ether ether ketone) and graphene oxide: a ternary hybrid membrane architecture for electrolyte applications in proton exchange membrane fuel cells", J. Energy Chem., Vol. 27, No. 4, 2018, pp. 1247-1260.   DOI
17 B. Zhao, L. Cheng, Y. Bei, S. Wang, J. Cui, H. Zhu, X. Li, and Q. Zhu, "Grafted polybenzimidazole copolymers bearing polyhedraloligosilsesquioxane pendant moieties", Eur. Polym. J., 2017, Vol. 94, pp. 99-110.   DOI
18 R. P. Singh, X. Li, K. W. Dudeck, B. C. Benicewicz, and K. A. Berchtold, "Polybenzimidazole based random copolymers containing hexafluoroisopropylidene functional groups for gas separations at elevated temperatures", Polymer, Vol. 119, 2017, pp. 134-141.   DOI
19 M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari, "Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe2TiO5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell(HT-PEMFC)", Int. J. Hydrogen Energy, Vol. 41, No. 4, 2016, pp. 2896-2910.   DOI
20 A. R. Kim, M. Vinothkannan, G. Gnana kumar, and D. J. Yoo, "Sulfonated graphene oxide/nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells", RSC Advances, Vol. 8, No. 14, 2018, pp. 7494-7508.   DOI
21 G. Gnana kumar, A. R. Kim, K. S. Nahm, and D. J. Yoo, "High proton conductivity and low fuel crossover of polyvinylidene fluoride-hexafluoro propylene silica sulfuric acid composite membranes for direct methanol fuel cells", Curr. Appl. Phys., Vol. 11, No. 3, 2011, pp. 896-902.   DOI
22 R. S. Bhavsar, S. B. Nahire, M. S. Kale, S. G. Patil, P. P. Aher, R. A. Bhavsar, and U. K. Kharul, "Polybenzimidazoles based on 3,3′‐diaminobenzidine and aliphatic dicarboxylic acids: synthesis and evaluation of physicochemical properties toward their applicability as proton exchange and gas separation membrane material", J. Appl. Polym. Sci, Vol. 120, No. 2, 2011, pp. 1090-1099.   DOI
23 J. C. Chen, P. Y. Chen, S. W. Lee, G. L. Liou, C. J. Chen, Y. H. Lan, and K. H. Chen, "Synthesis of soluble polybenzimidazoles for high-temperature proton exchange membrane fuel cell (PEMFC) applications", React. Funct. Polym., Vol. 108, 2016, pp. 122-129.   DOI
24 A. R. Kim, M. Vinothkannan, J. S. Kim, and D. J. Yoo, "Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability", Polym. Bull., Vol. 75, No. 7, 2018, pp. 2779-2804.   DOI
25 D. Aili, L. N. Cleemann, Q. Li, J. O. Jensen, E. Christensen, and N. J. Bjerrum, "Thermal curing of PBI membranes for high temperature PEM fuel cells", J. Mater. Chem., Vol. 22, 2012, pp. 5444-5453.   DOI
26 Y. Cai, Z. Yue, X. Teng, and S. Xu, "Phosphoric Acid doped crosslinked polybenzimidazole/modified graphene oxide composite membranes for high temperature proton exchange membrane applications", J. Electrochem. Soc, Vol. 165, No.11, 2018, pp. 914-920.   DOI
27 L. Wang, J. Ni, D. Liu, C. Gong, and L. Wang, "Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 43, No. 34, 2018, pp. 16694-16703.   DOI
28 B. Sana and T. Jana, "Polymer electrolyte membrane from polybenzimidazoles: Influence of tetraamine monomer structure", Polymer, Vol. 137, 2018, pp. 312-323.   DOI
29 Z. Xia, L. Ying, J. Fang, Y. Du, W. Zhang, X. Guo, and J. Yin, "Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications". J. Membr. Sci., Vol. 525, 2017, pp. 229-239.   DOI
30 M. Vinothkannan, A. R. Kim, K. S. Nahm, and D. J. Yoo, "Tenary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity", RCS Advances, Vol. 6, No. 110, 2016, pp. 108851-108863.
31 Y. Ozdemir, N. Ozkan, and Y. Devrim, "Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells", Electrochim. Acta, Vol. 245, 2017, pp. 1-13.   DOI
32 M. Li, G. Zhang, H. Zuo, M. Han, C. Zhao, H. Jiang, Z. Liu, L. Zhang, and H. Na, "End-group cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane", J. Membr. Sci., Vol. 423-424, 2012, pp. 495-502.   DOI
33 J. W. Lee, D. Y. Lee, H. J. Kim, S. Y. Nam, J. J. Choi, J. Y. Kim, J. H. Jang, E. A. Cho, S. K. Kim, S. A. Hong, and T. H. Lim, "Synthesis and characterization of acid-doped polybenzimidazole membranes by sol-gel and post-membrane casting method", J. Membr. Sci., Vol. 357, 2010, pp. 130-133.   DOI
34 Y. Shao, G. Yin, Z. Wang, and Y. Gao, "Proton exchange membrane fuel cell from low temperature to high temperature: material challenges", J. Power Sources, Vol. 167, 2017, pp. 235-242.
35 G. J. K. Acres, "Recent advances in fuel cell technology and its applications", J. Power Sources, Vol. 100, 2001, pp. 60-66.   DOI
36 H. S. Lee, A. Roy, O. Lane, and J. E. McGrath, "Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells", Polymer, Vol. 49, 2008, pp. 5387-5396.   DOI