Browse > Article
http://dx.doi.org/10.7316/KHNES.2017.28.5.471

The Electrochemical Performance Evaluation of PBI-based MEA with Phosphoric Acid Doped Cathode for High Temperature Fuel Cell  

RHEE, JUNKI (Department of Chemical and Biomolecular Engineering, Yonsei University)
LEE, CHANMIN (Department of Chemical and Biomolecular Engineering, Yonsei University)
JEON, YUKWON (Department of Chemical and Biomolecular Engineering, Yonsei University)
LEE, HONG YEON (Department of Chemical and Biomolecular Engineering, Yonsei University)
PARK, SANG SUN (Department of Chemical and Biomolecular Engineering, Yonsei University)
KIM, TAE YOUNG (Energy & Environment Lab., Samsung Advanced Institute of Technology)
KIM, HEESEON (Department of Mechanical Engineering, Yonsei University)
SONG, SOONHO (Department of Mechanical Engineering, Yonsei University)
PARK, JUNG OCK (Energy & Environment Lab., Samsung Advanced Institute of Technology)
SHUL, YONG-GUN (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.28, no.5, 2017 , pp. 471-480 More about this Journal
Abstract
A proton exchange membrane fuel cell (PEMFC) operated at $150^{\circ}C$ was evaluated by a controlling different amount of phosphoric acid (PA) to a membrane-electrode assembly (MEA) without humidification of the cells. The effects on MEA performance of the amount of PA in the cathode are investigated. The PA content in the cathodes was optimized for higher catalyst utilization. The highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode confirmed by in-situ cyclic voltammetry. The current density-voltage experiments (I-V curve) also shows a transient response of cell voltage affected by the amount of PA in the electrodes. Furthermore, this information was compared with the production variables such as hot pressing and vacuum drying to investigate those effect to the electrochemical performances.
Keywords
High temperature polymer electrolyte membrane fuel cell; Membrane Electrode Assembly; Polybenzimidazole (PBI); Phosphoric acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Kurdakova, E. Quartarone, P. Mustarelli, A. Magistris, E. Caponetti, and M. L. Saladino, "PBI-based composite membranes for polymer fuel cells", J. Power Sources, Vol. 23, 2010, pp. 7765-7769.
2 R. Devanathan, "Recent developments in proton exchange membranes for fuel cells", Energy Environ. Sci, Vol. 1, 2008, pp. 101-109.   DOI
3 Y. Oono, A. Sounai, and M. Hori, "Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells", J. Power Sources, Vol. 1, 2009, pp. 943-949.
4 J. Hu, H. Zhang, Y. Zhai, G. Liu, J. Hu, and B. Yi, "Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis", Electrochim. Acta, Vol. 52, 2006, pp. 394-401.   DOI
5 Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Progress in Polymer Science, Vol. 34, 2009, pp. 449-477.   DOI
6 Y. Zhai, H. Zhang, G. Liu, J. Hu, and B. Yi, "Degradation Study on MEA in $H_3PO_4$/PBI High-Temperature PEMFC Life Test", J. Electrochem. Soc, Vol. 154, 2007, pp. B72-B76.   DOI
7 Y. Zhai, H. Zhang, Y. Zhang, and D. Xing, "A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells", J. Power Sources, Vol. 169, 2007, pp. 259-264.   DOI
8 K. Kwon, T. Y. Kim, D. Y. Yoo, S. G. Hong, and J. O. Park, "Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid", J. Power Sources, Vol. 188, 2009, pp. 463-467.   DOI
9 F. Seland, T. Berning, B. Borresen, and R. Tunold, "Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte", J. Power Sources, Vol. 160, 2006, pp. 27-38.   DOI
10 E. K. Cho, J. S. Park, S. S. Sekhon, G. G. Park, T. H. Yang, W. Y. Lee, and C. S. Kim, "A Study on Proton Conductivity of Composite Membranes with Various Ionic Liquids for High-Temperature Anhydrous Fuel Cells", J. Electrochem. Soc, Vol. 156, 2009, pp. B197-B202.   DOI
11 C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H. A. Hjulmand, and A. B. Jensen, "Integration of high temperature PEM fuel cells with a methanol reformer", J. Power Sources, Vol. 145, 2005, pp. 392-398.   DOI
12 J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z. S. Liu, and S. Holdcroft, "High temperature PEM fuel cells", J. Power Sources, Vol. 160, 2006, pp. 872-891.   DOI
13 C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells", J. Power Sources, Vol. 103, 2001, pp. 1-9.   DOI
14 J. T. Wang, R. F. Savinell, J. Wainright, M. Litt, and H. Yu, "A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte", Electrochim. Acta, Vol. 41, 1996, pp. 193-197.   DOI
15 N. H. Jalani, M. Ramani, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R. Staudt, and R. Datta, "Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells", J. Power Sources, Vol. 160, 2006, pp. 1096-1103.   DOI
16 S. Yu, L. Xiao, and B. C. Benicewicz, "Durability Studies of PBI-based High Temperature PEMFCs", Fuel Cells, Vol. 8, 2008, pp. 165-174.   DOI
17 P. Krishnan, J. S. Park, and C. S. Kim, "Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide", J. Power Sources, Vol. 159, 2006, pp. 817-823.   DOI
18 J. A. Asensio, S. Borros, and P. Gomez-Romero, "Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes", J. Electrochem. Soc, Vol. 151, 2004, pp. A304-A310.   DOI
19 D. Aili, L. N. Cleemann, Q. Li, J. O. Jensen, E. Christensen, and N. J. Bjerrum, "Thermal curing of PBI membranes for high temperature PEM fuel cells", J. Mater. Chem, Vol. 22, 2012, pp. 5444-5453.   DOI
20 Y. Zhai, H. Zhang, D. Xing, and Z. G. Shao, "The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test", J. Power Sources, Vol. 164, 2007, pp. 126-133.   DOI
21 H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, "Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs", Appl. Catal. B, Vol. 56, 2005, pp. 9-35.   DOI
22 A. Kuver, I. Vogel, and W. Vielstich, "Distinct performance evaluation of a direct methanol SPE fuel cell. A new method using a dynamic hydrogen", J. Power Sources, Vol. 52, 1994, p. 77.   DOI
23 J. Zhang, G. P. Yin, Z. B. Wang, Q. Z. Lai, and K. D. Cai, "Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells", J. Power Sources, Vol. 165, 2007, pp. 73-81.   DOI
24 C. Song and P. G. Pickup, "Effect of Hot Pressing on the Performance of Direct Methanol Fuel Cells", J. Appl. Electrochem, Vol. 34, 2004, pp. 1065-1070.   DOI
25 H. Y. Tang, A. D. Santamaria, J. Bachman, and J. W. Park, "Vacuum-assisted drying of polymer electrolyte membrane fuel cell", Applied Energy, Vol. 107, 2013, pp. 264-270.   DOI
26 C. Ratti, X. D. Chen, and A. S. Mujumdar, "Drying Technologies in Food Processing", Wiley -Blackwell, 2008.