• Title/Summary/Keyword: phosphor powder

Search Result 174, Processing Time 0.024 seconds

A Study on Powder Electroluminecscent Device for High Brightness (고휘도 후막 전계발광소자에 관한 연구)

  • Oh, Joo-Youl;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1382-1384
    • /
    • 1998
  • Electroluminescence is occurred when phosphor is located in electric field. Object of this research show new type of powder electroluminescent device (PELD) for high brightness compared with conventional PELD. New type of PELD structured as follow ITO/phosphor + dielectric/Silver paste). To investigate optical properties of PELDs, EL spectrum, CIE coordinate system, Brightness of PELDs was measured. The suitable ratio between phosphor and dielectric in new type of PELD was 7:3(phosphor:dielectric). At 200 V 400 Hz, new type of PELD which had ratio of 7:3 was 5700 cd/$m^2$.

  • PDF

Red-emissive Y2SiO5:Eu3+ Phosphor-based Electroluminescence Device (Y2SiO5:Eu3+ 형광체 기반 적색 전계 발광 소자)

  • Hyunjee Jung;Sunho Park;Jong Su Kim;Hoon Heo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.83-87
    • /
    • 2023
  • Y2SiO5 Powder based on silicon and yttrium is well known as powder phosphors due to their excellent sustainability and efficiency. A new electroluminescence device was fabricated with Y2SiO5:Eu3+ powder phosphors though a simple screen printing method. The powder-dispersed electroluminescence device consisted of the Y2SiO5:Eu3+ powder-dispersed phosphor layer and BaTiO3-dispersed dielectric layer. The annealing temperature of the phosphor for the best powder electroluminescence performance was optimized to high temperature in ambient atmosphere though a solid-state reaction. The Eu3+ concentration for the best device performance was also investigated and furthermore, the thermal dependence of the electroluminescence intensity was investigated at the operating voltage at 100℃, which is the Curie temperature of the BaTiO3 layer. And the intensity was exponentially increased with voltage and increased linearly with frequency.

  • PDF

Optimization of VUV Characteristics of M3MgSi2O8:Eu2+ (M=Ca, Sr, Ba) Phosphor by Spray Pyrolysis (분무열분해법을 이용하여 M3MgSi2O8:Eu2+ (M=Ca, Sr, Ba) 형광체 분말의 VUV 특성 최적화)

  • Jung, You-Ri;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.399-404
    • /
    • 2008
  • Spray pyrolysis was applied to prepare $M_{3}MgSi_{2}O_{8}:Eu^{2+}$ (M=Ca, Sr, Ba) blue phosphor powder. The library of a Ca-Sr-Ba ternary system was obtained by a combinatorial method combined with the spray pyrolysis in order to optimize the luminescent property under vacuum ultraviolet (VUV) excitation. 10 potential compositions were chosen from the first screening. The emission shifted to longer wavelength as Ca became a dominant element and the emission intensity was greatly reduced in the composition region at which Ba is dominant element. On the base of the first screening result, the second fine tuning was carried out in order to optimize the luminescence intensity under VUV excitation. The optimal composition for the highest luminescence intensity was $(Ca_{1.7},\;Sr_{0.3},\;Ba_{1.0})Si_{2}O_{8}:Eu^{2+}$ which had the color coordinate of (0.152, 0.072) and about 64% emission intensity of $BaMgAl_{10}O_{17}$ (BAM) phosphor.

Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process (Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가)

  • Shin, Weon Ho;Kim, Seyun;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2018
  • Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

Luminescent Properties of Y2O3:Eu Red Phosphor Particles Prepared by Microwave Synthesis (마이크로웨이브 합성법으로 제조한 Y2O3:Eu 적색 형광체의 발광 특성)

  • Maniquiz, Meriel Chua;Kang, Tae-Won;Ahn, Jin-Han;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.203-208
    • /
    • 2009
  • $Y_2O_3$:Eu red phosphor was prepared by microwave synthesis. The crystal phase, particle morphology, and luminescent properties were characterized by XRD, SEM, and spectrofluorometer, respectively. The prepared $Y_2O_3$:Eu particles had good crystallinity and strong red emission under ultravioletet excitation. The crystallite size increased with calcination temperature and satuarated at $1200^{\circ}C$. The primary particle size initially formed was varied from 30 to 450 nm with microwave-irradiation (MI) time. It was found that the emission intensity of $Y_2O_3$:Eu phosphor strongly depends on the MI time. In terms of the emission intensity, it was recommended that the MI time should be less than 15 min. The emission intensity of $Y_2O_3$:Eu phosphor prepared by microwave syntehsis strongly depended on the crystallite size of which an optimal size range was 50-60 nm.

Properties of Y3Al5O12:Ce3+,Pr3+ Single Crystal for White Laser Lightings (백색 레이저 조명용 Y3Al5O12:Ce3+,Pr3+ 단결정 특성)

  • Kang, Taewook;Lim, Seokgyu;Kim, Jongsu;Lee, Bong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.37-41
    • /
    • 2018
  • $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was prepared by floating zone method. single crystal was confirmed to have a Ia-3d (230) space group of cubic structure and showed regular morphology. The optical properties, single crystal exhibited a emission band from green, yellow wide wavelength and 610nm, 640nm red wavelength vicinity. The luminance maintenance rate was decreased by phonon with increasing temperature, but high luminance is maintained more than powder phosphor. In addition, $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was applied to a high power blue laser diode, we implemented high power white laser lightings. and it was confirmed that thermal properties over time, due to the effective heat transfer of complete crystal structure. We confirmed that excellent radiant heat properties than powder phosphor was applied to a high power white laser diode.

Study on the High Efficiency of Anode Phosphor Electrode for Filed Emission Lamp (II) - Diffused Reflection Layer (전계방출광원용 고효율 에노드 형광막 특성 연구(II) - 난반사막)

  • Lee, Sun-Hee;Kim, Kwang-Bok;Kim, Yong-Won;You, Yong-Chan;Kim, Do-Jin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.89-91
    • /
    • 2007
  • In order to decrease the degradation of phosphor on anode, many kinds of methods try to do coating of phosphor powders and AI metal layer of anode phosphor, In case of direct coating of phosphor powder, thin and uniform coating process are difficult to cover homogeneous in the surface of phosphor powders and given rise to decrease the brightness, Anti-reflection-layer(ARC) with $TiO_2$, $Al_2O_3$, $Y_2O_3$ showed 103[%] the enhancement of brightness in comparable with normal phosphor layer.

  • PDF

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

Effects of Advertising according to the Altering Color Coordinates of the Outdoor Billboards a Inorganic Powder EL Lamp That was made by Screen Printing Technique (스크린 인쇄 기법에 의해 제작된 옥외 광고용 분산형 무기 EL 램프의 색좌표 변화와 광고 효과)

  • Moon, Kil-Hwan;Lee, Kwang-Sook
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.1
    • /
    • pp.47-58
    • /
    • 2012
  • The inorganic powder EL lamp was made by screen printing technique with a phosphor ink and a dielectric ink. Value of color coordinates X and Y increased under the condition of supplying driving power to the inorganic powder EL lamp and changing voltage with constant frequency. When frequency was changed under the constant voltage, value of color coordinates X and Y were decreased with increasing frequency. However, level of change of color coordinates X was different from color coordinates Y. When voltage was increased under constant frequency, changing degree of color coordinates X and Y shows similarity. But under the constant voltage with changing frequency, color coordinates X and Y were differently changed that degree of change of color coordinates Y showed five times more than that of color coordinates X. As increasing thickness of phosphor ink and dielectric ink, level of voltage and frequency, color coordinates X and Y were slightly changed. According to the thickness of phosphor ink and dielectric ink, and level of voltage and frequency, color coordinate of color light was changed. Frequency was most important element influencing on the change of color coordinate.

Electrical and Optical Characteristics of AC P-ELD using ZnS:Cu,Cl (ZnS:Cu,Cl 형광체를 사용한 powder형 AC Electroluminescence의 전기적 광학적 특성)

  • 임민수;권순석;신유섭;윤성현;정득영;임기조;류부형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.271-274
    • /
    • 1999
  • In this paper, we studied the matrix type Powder AC Electroluminescence using ZnS:Cu,Cl Phosphor. Previously, Powder AC EL was used in Backlighting of LCD. Rescently, organic Thin Film EL was rapidly developed because of high Luminescence and low applied voltage. But Powder AC EL has Superior features that include sheet like flexibility thickness, low weight, self-emission, a wide viewing angle and a fast response time. We tried to change of phosphor thickness and binder mixture rate in order to obtain the good condition of powder AC EL and we obtained the very low breakdown voltage that was just 15V. Till now, we measured the current-voltage(V-I), luminance-voltage(V-L), Luminance-current (L-I), color coordinate (CIE), and phosphor Intensity of variable thickness. In experiment result, the devices has the luminance of 840 cd/$m^2$ and improved color coordinate, x=0.1557, y=0.2145, using a 10kHz drive frequency.

  • PDF