• Title/Summary/Keyword: phosphor conversion

Search Result 55, Processing Time 0.027 seconds

Near-Infrared and Blue Emissions of LuNbO4:Yb3+, Tm3+ Phosphors (LuNbO4:Yb3+, Tm3+ 형광체의 근적외선 및 청색 발광 특성)

  • Im, Min Hyuk;Kim, Young Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.355-360
    • /
    • 2018
  • $LuNbO_4:0.2Yb^{3+},xTm^{3+}$ powders were prepared using a solid-state reaction process. The effects of the amount of Tm on up-conversion(UC) and down-conversion(DC) luminescence properties are investigated. X-ray diffraction patterns confirm that $Yb^{3+}$ and $Tm^{3+}$ ions are successfully incorporated into Lu sites. Under 980 nm excitation, the UC spectra of the powders predominantly exhibit strong near-infrared emission bands that peak at 805 nm, whereas weak 480 nm emission bands are observed as well. The emission bands are assigned to the $^1G_4{\rightarrow}^3H_6$ (480 nm) and 3 $^3H_4{\rightarrow}^3H_6$ (805 nm) transitions of the $Tm^{3+}$ ions via an energy transfer from $Yb^{3+}$ to $Tm^{3+}$; two- and three-photon UC processes are responsible for the 805 and 480 nm emissions, respectively. The DC emission spectra exhibit blue emission ($^1D_2{\rightarrow}^3F_4$) of $Tm^{3+}$ at 458 nm. The amount of Tm affects the emission intensity with the strongest emissions at x = 0.007 and 0.02 for the UC and DC luminescence, respectively. The results demonstrate that $LuNbO_4:Yb^{3+},Tm^{3+}$ phosphors are suitable for bio-applications.

Tracking and Deflection Coil Design for Vertical Colour Selection

  • Wesenbeeck, R. Van;Skoric, B.;Ijzerman, W.;Krijn, M.;Engelaar, P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.130-133
    • /
    • 2003
  • Vertical Colour Selection (VCS) is an option for slim CRTs with increased sharpness and brightness. The direction of self-convergence of the DY is changed to vertical in order to obtain better spot uniformity, but the line scan direction remains horizontal. Hence, no video conversion is needed, contrary to transposed scan. In this paper we address two issues: First, there is a high risk of moire, since the scan lines and the phosphor stripes are parallel. We propose a feedback mechanism guiding the electron beams towards the middle of the mask slots. As positive side effects, the brightness is improved and the shadow mask can be made of a cheap type of steel. Secondly, VCS deflection coils have to satisfy different requirements than coils in ordinary CRTs. We discuss the design rules for self-convergent VCS coils and present simulation results.

  • PDF

Analysis of Color Uniformity of White LED Lens Packages for Direct-lit LCD Backlight Applications

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.506-512
    • /
    • 2013
  • Recently, the color separation issue of wide-spreading white LEDs has attracted attention due to their wide applicability as light sources in direct-lit LCD backlights. These wide-spreading LED packages usually consist of LED chips, a color-conversion phosphor layer, and a light-shaping lens. The technical aspect of this color issue was related to a method for balancing the yellow spectral component emitting from phosphors with respect to the blue one from the LED chip as a function of viewing angle. In this study, we suggested an approach for carrying out quantitative analysis for the color separation problem occurring in wide-spreading LED packages by optical simulation. In addition, the effect of an internal scattering layer on the color uniformity was investigated, which may be considered as a potential solution for this problem.

Effects of sodium dodecyl sulfate surfactant on up-conversion luminescence of Er3+/Yb3+-codoped NaLa(MoO4)2 nanocolloidal phosphor prepared by pulsed laser ablation in water

  • Kang, SukHyun;Jung, Kyung-Hwan;Kim, Kang Min;Kim, Won Rae;Han, HyukSu;Mhin, Sungwook;Son, Yong;Shim, Kwang Bo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.2
    • /
    • pp.158-163
    • /
    • 2019
  • Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals were synthesized by pulsed laser ablations in de-ionized water and sodium dodecyl sulfate (NaC12H25SO4, SDS) aqueous solution for up-conversion (UC) luminescence bio-labeling applications. The influences of the SDS molecules on the crystallinities, crystal morphologies, crystallite sizes, and UC luminescence properties of the prepared Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals were investigated in detail. Under a 980-nm excitation, the Er3+/Yb3+-codoped nanocolloidal NaLa(MoO4)2 suspension exhibited a weak red emission near 670 nm and strong green UC emissions at 530 and 550 nm, corresponding to the intra 4f transitions of Er3+ (4F9/2, 2H11/2, 4S3/2) → Er3+ (4I15/2). When the SDS solution was used, a smaller average crystallite size, narrower size distribution, and enhanced UC luminescence were observed. These characteristics were attributed to the amphoteric SDS molecules attached to the positively charged Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals, effectively occupying the oxygen defect on their surfaces. The Er3+/Yb3+-codoped nanocrystalline NaLa(MoO4)2 suspension prepared in the SDS solution exhibited a remarkably strong green emission visible to the naked eyes.

Thickness Dependence of Ultraviolet-excited Photoluminescence Efficiency of Lumogen Film Coated on Charge-coupled Device

  • Tao, Chunxian;Ruan, Jun;Shu, Shunpeng;Lu, Zhongrong;Hong, Ruijin;Zhang, Dawei;Han, Zhaoxia
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.284-288
    • /
    • 2017
  • In order to investigate the ultraviolet-excited photoluminescence properties of phosphor coatings and their relationship to thickness, Lumogen coatings with different thicknesses were deposited on quartz substrates and charge-coupled device chips by thermal evaporation. The variation of the film thickness affected the crystallite size, surface roughness and fluorescence signal. It was found that the Lumogen coating with the thickness of 420 nm has the largest luminescent signal and conversion efficiency, and the corresponding coated charge-coupled devices had the maximum quantum efficiency in the ultraviolet. These results provided one key parameter for improving the sensitivity of Lumogen coated charge-coupled devices to ultraviolet light.

Evaluation of the Lighting Characteristics in High Power White LED Module with Cooling Condition (방열 조건에 따른 5W급 고출력 백색 LED 모듈의 광 특성 평가)

  • Yun, Janghee;Ryeom, Jeongduk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.1-8
    • /
    • 2012
  • The performance and lighting characteristics of the LED depend on cooling condition because the power LED generates lots of heat. In this paper, the effect of the generated heat from power LED module on lighting characteristics and performance is measured and evaluated. For experiments, the transient temperature of a power LED module with cooling condition is measured. In addition, the temperature and lighting characteristics of the LED module are measured during the steady state. As a result, the cooling condition is less effective on the lighting characteristics of the LED module at rated current but the cooling condition extremely affects those of the LED module over the rated current. Because high temperature of the power LED module causes the low phosphor conversion, luminance efficiency becomes low and color temperature becomes high. When power LED module are driven over the rated condition, higher temperature is directly related to lighting characteristics and performance of the LED module rather than higher current.

Accurate electronic structures for Ce doped SiAlON using a semilocal exchange-correlation potential

  • Yu, Dong-Su;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.438-438
    • /
    • 2011
  • White light-emitting diodes (LEDs), the so-called next-generation solid-state lighting, offer benefits in terms of reliability, energy-saving, maintenance, safety, lead-free, and eco-friendly. Recently, rare-earth-doped oxynitride or nitride compounds have attracted a great deal of interest as a photoluminescent material because of their unique luminescent property, especially for white LEDs applications. Ce doped ${\beta}$-SiAlON has been studied as a wavelength conversion phosphor in white LEDs thanks to its high absorption rates, high quantum efficiency, and excellent thermal stability. Previously researches were not enough to understand the detail mechanism and characteristics of ${\beta}$-SiALON. The bandgap structures and electronic structures were not exact due to limitation of calculation methods. In this study, to elucidate the Ce doping effect on the SiAlON system, accurate band structures and electronic structure of the Ce doped ${\beta}$-SiAlON was intensively investigated using density functional theory calculations. In order to get a better description of the band gaps, MBJLDA method were used. We have found a single Ce atom site in ${\beta}$-SiAlON super cell. Furthermore, the density of state, band structure and lattice constant were intensively investigated.

  • PDF

Up-conversion Luminescence Characterization of CeO2:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Jung, Kyeong Youl;Min, Byeong Ho;Kim, Dae Sung;Choi, Byung-Ki
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.248-255
    • /
    • 2019
  • Spherical $CeO_2:Ho^{3+}/Yb^{3+}$ particles were synthesized using spray pyrolysis, and the upconversion (UC) properties were investigated with changing the preparation conditions and the infrared pumping power. The resulting particles had a size of about $1{\mu}m$ and hollow structure. The prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles exhibited intense green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$ and showed weak red or near-IR peaks. In terms of achieving the highest UC emission, the optimal concentrations of $Ho^{3+}$ and $Yb^{3+}$ were 0.3% and 2.0%, respectively. The UC emission intensity of prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles had a linear relationship with crystallite size and concentration quenching was caused by dipole-dipole interaction between the same ions. Based on the dependency of UC emission on the pumping power, the observed green upconversion was achieved through a typical two-photon process and concluded that the main energy transfer from $Yb^{3+}$ to $Ho^{3+}$ was involved in the ground-state adsorption (GSA) process.

Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor ($BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교)

  • Choi, Jang-Yong;Park, Ji-Koon;Gong, Hyun-Gi;Ahn, Sang-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF