Effects of sodium dodecyl sulfate surfactant on up-conversion luminescence of Er3+/Yb3+-codoped NaLa(MoO4)2 nanocolloidal phosphor prepared by pulsed laser ablation in water

  • Kang, SukHyun (Department of Materials Science and Engineering, Hanyang University) ;
  • Jung, Kyung-Hwan (Korea Institute of Industrial Technology) ;
  • Kim, Kang Min (Korea Institute of Industrial Technology) ;
  • Kim, Won Rae (Korea Institute of Industrial Technology) ;
  • Han, HyukSu (Department of Materials Science and Engineering, Hongik University) ;
  • Mhin, Sungwook (Korea Institute of Industrial Technology) ;
  • Son, Yong (Korea Institute of Industrial Technology) ;
  • Shim, Kwang Bo (Department of Materials Science and Engineering, Hanyang University) ;
  • Lee, Jung-Il (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • Published : 2019.04.01

Abstract

Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals were synthesized by pulsed laser ablations in de-ionized water and sodium dodecyl sulfate (NaC12H25SO4, SDS) aqueous solution for up-conversion (UC) luminescence bio-labeling applications. The influences of the SDS molecules on the crystallinities, crystal morphologies, crystallite sizes, and UC luminescence properties of the prepared Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals were investigated in detail. Under a 980-nm excitation, the Er3+/Yb3+-codoped nanocolloidal NaLa(MoO4)2 suspension exhibited a weak red emission near 670 nm and strong green UC emissions at 530 and 550 nm, corresponding to the intra 4f transitions of Er3+ (4F9/2, 2H11/2, 4S3/2) → Er3+ (4I15/2). When the SDS solution was used, a smaller average crystallite size, narrower size distribution, and enhanced UC luminescence were observed. These characteristics were attributed to the amphoteric SDS molecules attached to the positively charged Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals, effectively occupying the oxygen defect on their surfaces. The Er3+/Yb3+-codoped nanocrystalline NaLa(MoO4)2 suspension prepared in the SDS solution exhibited a remarkably strong green emission visible to the naked eyes.

Keywords

References

  1. N. Menyuk, K. Dwight, J.W. Pierce, Appl. Phys. Lett. 21 (1972) 159-165. https://doi.org/10.1063/1.1654325
  2. P. Li, Q. Peng, Y. Li, Adv. Mater. 21 (2009) 1945-1948. https://doi.org/10.1002/adma.200803228
  3. L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, Y. Li, Angew. Chem. Int. Ed. 44 (2005) 6054-6057. https://doi.org/10.1002/anie.200501907
  4. Shalav, B.S. Richards, M.A. Green, Energy Mater. Sol. Cell. 91 (2007) 829-842. https://doi.org/10.1016/j.solmat.2007.02.007
  5. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, Science 273 (1996) 1185-1189. https://doi.org/10.1126/science.273.5279.1185
  6. G. Glaspell, J. Anderson, J.R. Wilkins, M.S. El-Shall, J. Phys. Chem. C. 112 (2008) 11527-11531. https://doi.org/10.1021/jp801597u
  7. T. Anh, P. Benalloul, C. Barthou, L. Giang, N. Vu, L. Minh, J. Nanomat. (2007), 48247-43857.
  8. A.B. Campos, A.Z. Simoes, E. Longo, J.A. Varela, V.M. Longo, A.T. de Figueiredo, F.S. De Vicente, A.C. Hernandes, Appl. Phys. Lett. 91 (2007) 051923. https://doi.org/10.1063/1.2766856
  9. L. Macalik, J. alloys Compd. 341 (2002) 226-232. https://doi.org/10.1016/S0925-8388(02)00084-1
  10. Y.W. Wei, Y.J. Chen, Y.F. Lin, X.H. Gong, Z.D. Luo, Y.D. Huang, J. Alloys Compd. 484 (2009) 529-534. https://doi.org/10.1016/j.jallcom.2009.04.147
  11. L.H.C. Andrade, M.S. Li, Y. Guyot, A. Brenier, G. Boulon, J. Phys. Condens. Matter. 18 (2006) 7883-7894. https://doi.org/10.1088/0953-8984/18/34/003
  12. M.S. Sibbald, G. Chumanov, T.M. Cotton, J. Phys. Chem. 100 (1996) 4672-4678. https://doi.org/10.1021/jp953248x
  13. J. Heddersen, G. Chumanov, T.M. Cotton, Appl. Spectrosc. 47 (1993) 1959-1964. https://doi.org/10.1366/0003702934066460
  14. A.V. Simakin, V.V. Voronov, G.A. Shafeev, R. Brayner, F.B. Verduraz, Chem. Phys. Lett. 348 (2001) 182-186. https://doi.org/10.1016/S0009-2614(01)01136-8
  15. R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Opt. Commun. 240 (2004) 437-448. https://doi.org/10.1016/j.optcom.2004.06.049
  16. G.A. Shafeev, E. Freysz, F.B. Verduraz, Appl. Phys. A 78 (2004) 307-309. https://doi.org/10.1007/s00339-003-2357-4
  17. Iwabuchi, C.-K. Choo, K. Tanaka, J. Phys. Chem. B 108 (2004) 10863-10871. https://doi.org/10.1021/jp049200d
  18. K.V. Anikin, N.N. Melnik, A.V. Simakin, G.A. Shafeev, V.V. Voronov, A.G. Vitukhnovsky, Chem. Phys. Lett. 366 (2002) 357-360. https://doi.org/10.1016/S0009-2614(02)01534-8
  19. R.A. Ganeev, M. Bara, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Appl. Phys. B 80 (2005) 595-601. https://doi.org/10.1007/s00340-004-1734-9
  20. T. Tsuji, T. Hamagami, T. Kawamura, J. Yamaki, M. Tsuji, Appl. Surf. Sci. 243 (2005) 214-219. https://doi.org/10.1016/j.apsusc.2004.09.065
  21. K.M. Kim, J.H. Ryu, J. Alloy. Compd. 576 (2013) 195-200 https://doi.org/10.1016/j.jallcom.2013.04.134
  22. K. Cho, J. Choi, S. Mhin, K.M. Kim, J.-I. Lee, J.H. Ryu, J. Vac. Sci. & Tech. B 33 (2015) 041201.
  23. K. Cho, J. Choi, J.-I. Lee, J.H. Ryu, J. Kor. Phys. Soc. 68 (2016) 22-27. https://doi.org/10.3938/jkps.68.22
  24. J.-I. Lee, J.H. Ryu, J. Kor. Phys. Soc. 65 (2014) 1644-1648. https://doi.org/10.3938/jkps.65.1644
  25. R. Chadha, R. Sharma, N. Maiti, A. Ballal, S. Kapoor, Spectrochim. Acta A 150 (2015) 664-670. https://doi.org/10.1016/j.saa.2015.06.005
  26. H. Vatanparast, A. Samiee, A. Bahramian, A. Javadi, Colloid. Surface A, 513 (2017) 430-441. https://doi.org/10.1016/j.colsurfa.2016.11.012
  27. K. Cho, J. Choi, K.M. Kim, T.W. Kim, J.-I. Lee, J.H. Ryu, J. Nanosci. Nanotechnol. 16 (2016) 6344-6349. https://doi.org/10.1166/jnn.2016.12100
  28. V.A. Ageev, A.F. Bokhonov, V.V. Zhukovskii, A.A. Yankovskii, J. Appl. Spectr. 64 (1997) 683-688. https://doi.org/10.1007/BF02675334
  29. T. Sakka, S. Iwanaga, Y.H. Ogata, A. Matsunawa, T. Takemoto, J. Chem. Phys. 112 (2000) 8645-8653. https://doi.org/10.1063/1.481465
  30. Y.-H. Chen, C.-S. Yeh, Colloid. Surface A, 197 (2002) 133-139. https://doi.org/10.1016/S0927-7757(01)00854-8
  31. F. Auzel, Chem. Rev. 104 (2004) 139-174. https://doi.org/10.1021/cr020357g
  32. F. Wang, X. Liu, Chem. Soc. Rev. 38 (2009) 976-989. https://doi.org/10.1039/b809132n
  33. J.-H. Zeng, J. Su, Z.-H. Li, R.-X. Yan, Y.-D. Li, Adv. Mater. 17 (2005) 2119-2123. https://doi.org/10.1002/adma.200402046
  34. G.-S. Yi, G.-M. Chow, J. Mater. Chem. 15 (2005) 4460-4464. https://doi.org/10.1039/b508240d