• Title/Summary/Keyword: phospholipase

Search Result 611, Processing Time 0.024 seconds

Effects of PLCE1 Gene Silencing by RNA Interference on Cell Cycling and Apoptosis in Esophageal Carcinoma Cells

  • Zhao, Li;Wei, Zi-Bai;Yang, Chang-Qing;Chen, Jing-Jing;Li, Dan;Ji, Ai-Fang;Ma, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5437-5442
    • /
    • 2014
  • Esophageal squamous cell carcinoma (ESCC) is one of the most malignancies with a poor prognosis. The phospholipase $C{\varepsilon}$ gene (PLCE1) encodes a novel ras-related protein effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion. However, molecular mechanisms pertinent to ESCC are unclear. We therefore designed PLCE1-special small interfering RNA and transfected to esophageal squamous cell (EC) 9706 cells to investigat the effects of PLCE1 gene silencing on the cell cycle and apoptosis of ESCC and indicate its important role in the development of ESCC. Esophageal cancer tissue specimens and normal esophageal mucosa were obtained and assayed by immunohistochemical staining to confirm overexpression of PLCE1 in neoplasias. Fluorescence microscopy was used to examine transfection efficiency, while the result of PLCE1 silencing was examined by reverse transcription (RT-PCR). Flow cytometry and annexin V apoptosis assays were used to assess the cell cycle and apoptosis, respectively. Expression of cyclin D1 and caspase-3 was detected by Western-blotting. The level of PLCE1 protein in esophageal cancer tissue was significantly higher than that in normal tissue. After transfection, the expression of PLCE1 mRNA in EC 9706 was significantly reduced, compared with the control group. Furthermore, flow cytometry results suggested that the PLCE1 gene silencing arrested the cell cycle in the G0/G1 phase; apoptosis was significantly higher than in the negative control group and mock group. PLCE1 gene silencing by RNAi resulted in decreased expression of cyclin D1 and increased expression of caspase-3. Our study suggests that PLCE1 may be an oncogene and play an important role in esophageal carcinogenesis through regulating proteins which control cell cycling and apoptosis.

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. II. Inhibitory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Park, Soo-Hyun;Koh, Hyun-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.425-434
    • /
    • 1997
  • Many reports represent that angiotensin II (ANG II) caused a dose dependent biphasic effects on fluid transport in the proximal tubule. However, respective roles of different signaling pathways in mediating these effects remain unsettled. The aim of the present study was to examine signaling pathways at high doses of ANG II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells(PTCs) in hormonally defined serum-free medium. High concentrations of ANG II $(>10^{-9}\;M)$ inhibited $Na^+$ uptake and increased $[Ca^{2+}]_i\;level$ in the PTCs. However, low concentrations of $(<10^{-11}\;ANG\;II)$ stimulated $Na^+$ uptake and did not affect $[Ca^{2+}]_i\;level$. 8-(N, N-diethylamino)-octyl-3,3,5- trimethoxybenzoate (TMB-8), ethylene glycol-bis$({/beta}-amino\;ethyl ether)-N,N,N'$, N'-tetra acetic acid (EGTA), and nifedifine partially blocked the inhibitory effects of ANG II on $Na^+$ uptake. When ANG II and bradykinin (BK) were treated together, $Na^+$ uptake was further reduced $(88.47{\pm}1.98%\;of\;that\;of\;ANG\;II,\;81.85{\pm}1.84%\;of\;that\;of\;BK)$. In addition, W-7 and KN-62 blocked the ANG II-induced inhibition of $Na^+$ uptake. Arachidonic acid reduced $Na^+$ uptake in a dose-dependent manner. When ANG II and arachidonic acid were treated together, inhibitory effects on $Na^+$ uptake significantly exhibited greater reduction than that of each group, respectively. When PTCs were treated by mepacrine $(10^{-6}\;M)$ and AACOCF3 $(10^{-5}\;M)$ for 1 hr before the addition of $(<10^{-9}\;ANG\;II)$, the inhibitory effect of ANG II was reversed. In addition, econazole $(>10^{-6}\;M)$ blocked ANG II-induced inhibition of $Na^+$ uptake. In conclusion, the $[Ca^{2+}]_i$ (calcium-calmodulin-dependent kinase) and phospholipase $A_2\;(PLA_2)$ metabolites are involved in the inhibitory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

Effects of Cyclobuxine D on Carrageenin-induced Pleurisy and Croton Oil-induced Granuloma Pouch in Rats (흰쥐의 Carrageenin 유발 늑막염과 Croton oil 유발 육아종양에 미치는 Cyclobuxine D의 영향)

  • Lee, Jong-Hwoa;Park, Young-Hyun;Cho, Byung-Heon;Kim, Yu-Jae;Kim, Jong-Bae;Kim, Chung-Mok;Kim, Chun-Sook;Cha, Young-Deog;Kim, Young-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 1987
  • Cyclobuxine D, a steroidal alkaloid, was extracted from Buxus microphylla var. koreana Nakai. The effects of cyclobuxine D on carrageenin-induced pleurisy and croton oil-induced granuloma pouch in rats was investigated and compared with those of aspirin, hydrocortisone ana dexamethasone. Intrapleural injection of 2% carrageenin caused the accumulation of exudate. The rate of plasma exudation, measured by the exuded dye amounts for 20 min in the pleural cavity after intravenous injection of pontamine sky blue, showed a peak at 5 hr. Cyclobuxine D (5, 20 and 50 mg/kg, i.p.) suppressed dose-dependently the accumulation of the pleural exudate and the exudation of dye. Among several methods used for screening and evaluation anti-inflammatory agents, granuloma pouch technic introduced by Hans Selye (Hans seyle, 1953) is considered as a simple and reliable method. An air pocket was produced in the subcutaneous tissue of the interscapular region by injection of 1 ml of 1% croton oil as irritant. Inflammatory exudate accumulated in the pouch during the succeding 14 days. Cyclobuxine D (5 and 20 mg/kg) decreased fluid volume in pouch and weight of pouch wall in granulomatous inflammation.

  • PDF

DA-6034 Induces $[Ca^{2+}]_i$ Increase in Epithelial Cells

  • Yang, Yu-Mi;Park, Soonhong;Ji, HyeWon;Kim, Tae-Im;Kim, Eung Kweon;Kang, Kyung Koo;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces $Ca^{2+}$ signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in $Ca^{2+}$ signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated $Ca^{2+}$-activated $Cl^-$ channels (CaCCs) and increased intracellular calcium concentrations ($[Ca^{2+}]_i$) in primary cultured human conjunctival cells. DA-6034 also increased $[Ca^{2+}]_i$ in mouse salivary gland cells and human corneal epithelial cells. $[Ca^{2+}]_i$ increase of DA-6034 was dependent on the $Ca^{2+}$ entry from extracellular and $Ca^{2+}$ release from internal $Ca^{2+}$ stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate ($IP_3$) pathway and lysosomal $Ca^{2+}$ stores. These results suggest that DA-6034 induces $Ca^{2+}$ signaling via extracellular $Ca^{2+}$ entry and RyRs-sensitive $Ca^{2+}$ release from internal $Ca^{2+}$ stores in epithelial cells.

Induction of Apaopotis by Water Extract of Cordyceps militaris (WECM) in Human Hepatocellular Carcinoma HepG2 Cells. (동충하초 열수 추출물에 의한 인체 간암세포 성장억제 및 apoptosis 유발에 관한 연구)

  • Kim, Kyung-Mi;Park, Cheol;Choi, Yung-Hyun;Lee, Won-Ho
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.804-813
    • /
    • 2008
  • Cordyceps militaris, the Chinese medicinal fungal genus Cordyceps, is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, anti-virus and anti-infection activities. However, the molecular mechanisms of C. militaris on biochemical actions in cancer have not been clearly elucidated yet. In the present study, we investigated the anti-proliferative activity of the water extract of C. militaris (WECM) in human hepatocellular carcinoma HepG2 cells. It was found that WECM could inhibit the cell growth in a dose-dependent manner, which was associated with morphological changes and apoptotic cell death such as formation of apoptotic bodies and increased populations of apoptotic sub-G1 phase. Apoptotic cell death of HepG2 cells by WECM was connected with a up-regulation of pro-apoptotic Bax expression, tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1). In addition, WECM treatment induced the proteolytic activation of caspase-3 and a concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}-catenin$ and phospholipase $(PLC)-{\gamma}1$ protein. Furthermore, caspase-3 inhibitor, z-DEVD-fmk, significantly inhibited WECM-induced apoptosis demonstrating the important role of caspase-3 in the observed cytotoxic effect. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of C. militaris.

Ginseng Gintonin Activates the Human Cardiac Delayed Rectifier K+ Channel: Involvement of Ca2+/Calmodulin Binding Sites

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Jung, Seok-Won;Kim, Hyun-Sook;Shin, Ho-Chul;Lee, Jun-Hee;Kim, Hyoung-Chun;Rhim, Hyewhon;Hwang, Sung-Hee;Ha, Tal Soo;Kim, Hyun-Ji;Cho, Hana;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.656-663
    • /
    • 2014
  • Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits $[Ca^{2+}]_i$ transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier $K^+$ ($I_{Ks}$) channel is a cardiac $K^+$ channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating $I_{Ks}$ channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human $I_{Ks}$ channel activity by expressing human $I_{Ks}$ channels in Xenopus oocytes. We found that gintonin enhances $I_{Ks}$ channel currents in concentration- and voltage-dependent manners. The $EC_{50}$ for the $I_{Ks}$ channel was $0.05{\pm}0.01{\mu}g/ml$. Gintonin-mediated activation 1 of the $I_{Ks}$ channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an $IP_3$ receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the $I_{Ks}$ channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 $[Ca^{2+}]_i$/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on $I_{Ks}$ channel. However, gintonin had no effect on hERG $K^+$ channel activity. These results show that gintonin-mediated enhancement of $I_{Ks}$ channel currents is achieved through binding of the $[Ca^{2+}]_i$/CaM complex to the C terminus of KCNQ1 subunit.

Calcium Signaling of Dioleoyl Phosphatidic Acid via Endogenous LPA Receptors: A Study Using HCT116 and HT29 Human Colon Cancer Cell Lines

  • Chang, Young-Ja;Kim, Hyo-Lim;Sacket, Santosh J.;Kim, Kye-Ok;Han, Mi-Jin;Jo, Ji-Yeong;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.150-155
    • /
    • 2007
  • In the present study, we have tested the effect of dioleoyl phosphatidic acid (PA) on intracellular $Ca_{2+}$ concentration ($[Ca^{2+}]_{i}$) in two human colon cancer cell lines (HCT116 and HT29). PA and lysophosphatidic acid (LPA), a bioactive lysolipid, increased $[Ca^{2+}]_{i}$ in both HCT116 and HT29 cell lines. Increases of $[Ca^{2+}]_{i}$ by PA and LPA were more robust in HCT116 cells than in HT29 cells. A specific inhibitor of phospholipase C (U73122), however, was not inhibitory to the cell responses. Pertussis toxin, a specific inhibitor of $G_{i/o}$ type G proteins, however, had an inhibitory effect on the responses except for an LPA-induced one in HT29 cells. Ruthenium red, an inhibitor of the ryanodine receptor, was not inhibitory on the responses, however, 2-APB, a specific inhibitor of inositol 1,4,5-trisphosphate receptor, completely inhibited both lipid-induced $Ca^{2+}$ increases in both cell types. Furthermore, by using Ki16425 and VPC32183, two structurally dissimilar specific antagonists for $LPA_{1}/LPA_{3}$ receptors, an involvement of endogenous LPA receptors in the $Ca^{2+}$ responses was observed. Ki16425 completely inhibited the responses but the susceptibility to VPC32183 was different to PA and LPA in the two cell types. Expression levels of five LPA receptors in the HCT116 and HT29 cells were also assessed. Our data support the notion that PA could increase $[Ca^{2+}]_{i}$ in human colon cancer cells, probably via endogenous LPA receptors, G proteins and $IP_{3}$ receptors, thereby suggesting a role of PA as an intercellular lipid mediator.

Serotype and Enzymatic Profile of Crypfococcus neoformans Isolates from Clinical and Environmental Sources in Korea (한국의 임상과 자연환경에서 분리된 Cryptococcus neoformans의 혈청형과 효소생성능)

  • Hwang, Soo-Myung;Oh, Kwang-Seok;Lee, Kyung-Won
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.257-264
    • /
    • 2006
  • Fifty eight Cryptococcus neoformans strains isolated from clinical and environmental sources in Korea were examined for their serotypes and extracellular enzyme activities. Among the 51 strains isolated from clinical sources, 48 strains were serotype A (94.1%), 2 strains were serotype B (3.92%), and 1 strain was serotype D (1.96%). All seven environmental strains isolated from pigeon excreta were identified as serotype A. All isolates of C. neoformtans were positive for the production of extracellular proteinase and phospholipase. In the API-ZYM system, all fifty eight isolates produced alkaine phosphatase, esterase C4, esterase lipase: C8, leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrase, $\alpha$-glucosidase and $\beta$-glucosidase. Thirty nine isolates (67.2%) of C. neoformans produced N-acetyl-$\beta$-glucosidase. Two isolates, serotype B, and B only one serotype A produced $\beta$-glucuronidase. Analysis of enzymatic profiles to 21 enzymes revealed four biotypic patterns among the 58 strains. The enzymatic patterns of C. neoformans isolated from clinical and environmental sources represented a significant relationship with the serotypes.

Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells (황금(黃芩) 에탄올 추출물에 의한 인체 신세포암 Caki-1 세포의 자가세포사멸 유도)

  • Hwang, Won Deok;Im, Yong-Gyun;Son, Byoung Yil;Park, Cheol;Park, Dong Il;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.518-528
    • /
    • 2013
  • Scutellaria baicalensis, belonging to the family Labiatae, is widely distributed in Korea, China, Mongolia, and eastern Siberia. It has been used in traditional medicine for various diseases, such as dysentery, pyrexia, jaundice, and carbuncles. In addition, S. baicalensis is reported to possess various beneficial pharmacological activities, including anti-inflammatory, antidiabetic, antiviral, antihypertension, antioxidant, and anticancer effects. However, the molecular mechanisms of its anticancer activity have not been clearly elucidated. In the present study, we investigated the proapoptotic effects of ethanol extract of S. baicalensis (EESB) on human renal cell carcinoma Caki-1 cells. The anti-proliferative activity of EESB was associated with apoptosis induction, which was associated with the up-regulation of death receptor 4, the Fas ligand, and Bax and the down-regulation of Bid, XIAP, and cIAP-1 proteins. EESB treatment also induced mitochondrial dysfunction, proteolytic activation of caspase-3, -8, and -9 and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase, ${\beta}$-catenin, and phospholipase C-${\gamma}1$. However, pretreatment of a pan-caspase inhibitor, z-VAD-fmk, significantly attenuated the EESB-induced apoptosis. Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent. Further studies will be needed to identify the active compounds that confer the anticancer activity of S. baicalensis.

PRIP, a Novel Ins(1,4,5)P3 Binding Protein, Functional Significance in Ca2+ Signaling and Extension to Neuroscience and Beyond

  • Kanematsu, Takashi;Takeuchi, Hiroshi;Terunuma, Miho;Hirata, Masato
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2005
  • Investigation of chemically synthesized inositol 1,4,5-trisphosphate [$Ins(1,4,5)P_3$] analogs has led to the isolation of a novel binding protein with a molecular size of 130 kDa, characterized as a molecule with similar domain organization to phospholipase C-${\delta}1$ (PLC-${\delta}1$) but lacking the enzymatic activity. An isoform of the molecule was subsequently identified, and these molecules have been named PRIP (PLC-related, but catalytically inactive protein), with the two isoforms named PRIP-1 and -2. Regarding its ability to bind $Ins(1,4,5)P_3$ via the pleckstrin homology domain, the involvement of PRIP-1 in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling was examined using COS-1 cells overexpressing PRIP-1 and cultured neurons prepared from PRIP-1 knock-out mice. Yeast two hybrid screening of a brain cDNA library using a unique N-terminus as bait identified GABARAP ($GABA_A$ receptor associated protein) and PP1 (protein phosphatase 1), which led us to examine the possible involvement of PRIP in $GABA_A$ receptor signaling. For this purpose PRIP knock-out mice were analyzed for $GABA_A$ receptor function in relation to the action of benzodiazepines from the electrophysiological and behavioral aspects. During the course of these experiments we found that PRIP also binds to the b-subunit of $GABA_A$ receptors and PP2A (protein phosphtase 2A). Here, we summarize how PRIP is involved in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling and $GABA_A$ receptor signaling based on the characteristics of binding molecules.