References
- Attele, A.S., Wu, J.A., and Yuan, C.S. (1999). Ginseng pharmacology:multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
- Bai, C.X., Sunami, A., Namiki, T., Sawanobori, T., and Furukawa, T. (2003). Electrophysiological effects of ginseng and ginsenoside Re in guinea pig ventricular myocytes. Eur. J. Pharmacol. 476, 35-44. https://doi.org/10.1016/S0014-2999(03)02174-5
-
Bai, C.X., Takahashi, K., Masumiya, H., Sawanobori, T., and Furukawa, T. (2004). Nitric oxide-dependent modulation of the delayed rectifier
$K^+$ current and the L-type$Ca^{2+}$ current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pig cardiomyocytes. Br. J. Pharmacol. 142, 567-575. https://doi.org/10.1038/sj.bjp.0705814 - Bian, J., Cui, J., and McDonald, T.V. (2001). HERG K+ channel activity is regulated by changes in phosphatidyl inositol 4,5- bisphosphate. Circ. Res. 89, 1168-1176. https://doi.org/10.1161/hh2401.101375
- Chen, C.X., and Zhang, H.Y. (2009). Protective effect of ginsenoside Re on isoproterenol-induced triggered ventricular arrhythmia in rabbits. Zhongguo Dang Dai Er Ke Za Zhi. 11, 384-388.
-
Choi, S.H., Lee, J.H., Pyo, M.K., Lee, B.H., Shin, T.J., Hwang, S.H., Kim, B.R., Lee, S.M., Oh, J.W., Kim, H.C., et al. (2009). Mutations Leu427, Asn428, and Leu431 residues within transmembrane domain-I-segment 6 attenuate ginsenoside-mediated L-type
$Ca^{2+}$ channel current inhibitions. Biol. Pharm. Bull. 32, 1224-1230. https://doi.org/10.1248/bpb.32.1224 -
Choi, S.H., Shi, T.J., Lee, B.H., Chu, D.H., Choe, H., Pyo, M.K., Hwang, S.H., Kim, B.R., Lee, S.M., Lee, J.H., et al. (2010). Ginsenoside
$Rg_3$ activates human KCNQ1$K^+$ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit. Eur. J. Pharmacol. 637, 138-147. https://doi.org/10.1016/j.ejphar.2010.04.001 -
Choi, S.H., Shin, T.J., Lee, B.H., Hwang, S.H., Lee, S.M., Lee, B.C., Park, C.S., Ha, T.S., and Nah, S.Y. (2011). Ginsenoside
$Rg_3$ enhances large conductance$Ca^{2+}$ -activated potassium channel currents: a role of Tyr360 residue. Mol. Cells 31,133-140. https://doi.org/10.1007/s10059-011-0017-7 -
Choi, S.H., Lee, B.H., Hwang, S.H., Kim, H.J., Lee, S.M., Kim, H.C., Rhim, H.W., and Nah, S.Y. (2013). Molecular mechanisms of large-conductance
$Ca^{2+}$ -activated potassium channel activation by ginseng gintonin. Evid. Based Complement Alternat. Med. 2013, 323709. -
Fujisawa, S., Ono, K., andIijima T. (2000). Time-dependent block of the slowly activating delayed rectifier
$K^+$ current by chromanol 293B in guinea-pig ventricular cells. Br. J. Pharmacol. 129, 1007-1013. https://doi.org/10.1038/sj.bjp.0703126 - Furukawa, T., Bai, C.X., Kaihara, A., Ozaki, E., Kawano, T., Nakaya, Y., Awais, M., Sato. M., Umezawa, Y., and Kurokawa, J. (2006). Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol. Pharmacol. 70, 1916-1924. https://doi.org/10.1124/mol.106.028134
- Ghosh, S., Nunziato, D.A., and Pitt, G.S. (2006). KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin. Circ. Res. 98, 1048-1054. https://doi.org/10.1161/01.RES.0000218863.44140.f2
- Hille, B. (2001). Ion channels of excitable membranes. Sinauer Associates, Inc. Sunderland, MA, 814.
- Hwang, S.H., Shin, T.J., Choi, S.H., Cho, H.J., Lee, B.H., Pyo, M.K.,Lee, J.H., Kang, J., Kim, H.J., Park, C.W., et al. (2012). Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein coupled lysophosphatidic acid receptors with high affinity. Mol. Cells 33, 151-162. https://doi.org/10.1007/s10059-012-2216-z
- Kang, S.Y., Schini-Kerth, V.B., and Kim, N.D. (1995). Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci. 56, 1577-1586. https://doi.org/10.1016/0024-3205(95)00124-O
-
Kim, N.D., Kang S.Y., Park, J.H., and Schini-Kerth, V.B. (1999). Ginsenoside
$Rg_3$ mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of$K^+$ channels. Eur. J. Pharmacol. 367, 41-49. https://doi.org/10.1016/S0014-2999(98)00898-X - Kimura, Y., Schmitt, A., Fukushima, N., Ishii, I., Kimura, H., Nebreda, A.R., and Chun, J. (2001). Two vovelXenopus homologs of mammalian LPA1/EDG-2 function as lysophosphatidic acid receptors in Xenopus oocytes and mammalian cells. J. Biol. Chem. 276, 15208-15215. https://doi.org/10.1074/jbc.M011588200
-
Lee, J.H., Jeong, S.M., Kim, J.H., Lee, B.H., Yoon, I.S., Lee, J.H., Choi, S.H., Kim, D.H., Rhim, H., Kim, S.S., et al. (2005). Characteristics of ginsenoside Rg3-mediated brain
$Na^+$ current inhibition. Mol. Pharmacol. 68, 1114-1126. https://doi.org/10.1124/mol.105.015115 -
Lee, J.H., Lee, B.H., Choi, S.H., Yoon, I.S., Pyo, M.K., Shin, T.J., Choi, W.S., Lim, Y., Rhim, H., Won, K.H., et al. (2008). Ginsenoside
$Rg_3$ inhibits human 1.4 channel currents by interacting with the Lys531 residue. Mol. Pharmacol. 73, 619-626. -
Lee, J.H., Choi, S.H., Lee, B.H., Hwang, S.H., Kim, H.J., Rhee, J., Chung, C., andNah, S.Y. (2013). Activation of lysophosphatidic acid receptor by gintonin inhibits Kv1.2 channel activity: involvement of tyrosine kinase and receptor protein tyrosine phosphatase
$\alpha$ . Neurosci. Lett. 26, 143-148. - McCrossan, Z.A., and Abbott, G.W. (2004). The MinK-related peptides. Neuropharmacology 47, 787-821. https://doi.org/10.1016/j.neuropharm.2004.06.018
-
Missan, S., Linsdell, P., and McDonald, T.F. (2006). Tyrosine kinase and phosphatase regulation of slow delayed-rectifier
$K^+$ current in guinea-pig ventricular myocytes. J. Physiol. 1, 469-482. -
Nitta, J., Furukawa, T., Marumo, F., Sawanobori, T., and Hiraoka, M. (1994). Subcellular mechanism for
$Ca^{2+}$ -dependent enhancement of delayed rectifier$K^+$ current in isolated membrane patches of guinea pig ventricular myocytes. Circ. Res. 74, 96-104. https://doi.org/10.1161/01.RES.74.1.96 - Pyo, M.K., Choi, S.H., Hwang, S.H., Shin, T.J., Lee, B.H., Lee, S.M., Lim, Y.D., and Nah, S.Y. (2011). Novel glycoproteins from ginseng, J. Gingseng Res. 35, 92-103. https://doi.org/10.5142/jgr.2011.35.1.092
- Robbins, J. (2001). KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol. Ther. 90, 1-19. https://doi.org/10.1016/S0163-7258(01)00116-4
-
Salata, J.J., Jurkiewicz, N.K., Wang, J., Evans, B.E., Orme, H.T., and Sanguinetti, M.C. (1998). A novel benzodiazepine that activates cardiac slow delayed rectifier
$K^+$ currents. Mol. Pharmacol. 54, 220-230. https://doi.org/10.1124/mol.54.1.220 - Sanguinetti, M.C. (1999). Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann. N Y Acad. Sci. 868, 406-413. https://doi.org/10.1111/j.1749-6632.1999.tb11302.x
- Sanguinetti, M.C., Curran, M.E., Zou, A., Shen, J., Spector, P.S., Atkinson, D.L., and Keating, M.T. (1996). Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384, 80-83. https://doi.org/10.1038/384080a0
- Shamgar, L., Ma, L., Schmitt, N., Haitin, Y., Peretz, A., Wiener, R., Hirsch, J., Pongs, O., and Attali, B. (2006). Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ. Res. 98, 1055-1063. https://doi.org/10.1161/01.RES.0000218979.40770.69
- Tohse, N. (1990). Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells. Am. J. Physiol. 258, H1200-1207.
- Yus-Najera, E., Santana-Castro, I., and Villarroel, A. (2002). The identification and characterization of a noncontinuouscalmodulinbinding site in noninactivating voltage-dependent KCNQ potassium channels. J. Biol. Chem. 277, 28545-28553. https://doi.org/10.1074/jbc.M204130200
Cited by
- Extract of Sheng-Mai-San Ameliorates Myocardial Ischemia-Induced Heart Failure by Modulating Ca2+-Calcineurin-Mediated Drp1 Signaling Pathways vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091825
- Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension vol.159, 2016, https://doi.org/10.1016/j.pharmthera.2016.01.013
- Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism vol.71, pp.5, 2015, https://doi.org/10.1107/S139900471500259X
- A brief method for preparation of gintonin-enriched fraction from ginseng vol.39, pp.4, 2015, https://doi.org/10.1016/j.jgr.2015.05.002
- Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions vol.6, 2015, https://doi.org/10.3389/fphar.2015.00245
- The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0215
- Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes vol.26, pp.23, 2017, https://doi.org/10.1089/scd.2017.0172
- The Crossroad of Ion Channels and Calmodulin in Disease vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020400
- Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors vol.93, pp.None, 2014, https://doi.org/10.1016/j.bbi.2020.12.004
- Gintonin influences the morphology and motility of adult brain neurons via LPA receptors vol.45, pp.3, 2021, https://doi.org/10.1016/j.jgr.2020.06.003
- Modulating the Blood-Brain Barrier: A Comprehensive Review vol.13, pp.11, 2021, https://doi.org/10.3390/pharmaceutics13111980