Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0087

Ginseng Gintonin Activates the Human Cardiac Delayed Rectifier K+ Channel: Involvement of Ca2+/Calmodulin Binding Sites  

Choi, Sun-Hye (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center)
Lee, Byung-Hwan (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center)
Kim, Hyeon-Joong (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center)
Jung, Seok-Won (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center)
Kim, Hyun-Sook (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center)
Shin, Ho-Chul (Department of Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University)
Lee, Jun-Hee (Department of Physical Therapy, College of Health Science, Cheongju University)
Kim, Hyoung-Chun (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University)
Rhim, Hyewhon (Life Science Division, Korea Institute of Science and Technology)
Hwang, Sung-Hee (Department of Pharmaceutical Engineering College of Health Sciences Sangji University)
Ha, Tal Soo (Department of Biomedical Science, Daegu University)
Kim, Hyun-Ji (Department of Physiology and Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University)
Cho, Hana (Department of Physiology and Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University)
Nah, Seung-Yeol (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center)
Abstract
Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits $[Ca^{2+}]_i$ transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier $K^+$ ($I_{Ks}$) channel is a cardiac $K^+$ channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating $I_{Ks}$ channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human $I_{Ks}$ channel activity by expressing human $I_{Ks}$ channels in Xenopus oocytes. We found that gintonin enhances $I_{Ks}$ channel currents in concentration- and voltage-dependent manners. The $EC_{50}$ for the $I_{Ks}$ channel was $0.05{\pm}0.01{\mu}g/ml$. Gintonin-mediated activation 1 of the $I_{Ks}$ channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an $IP_3$ receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the $I_{Ks}$ channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 $[Ca^{2+}]_i$/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on $I_{Ks}$ channel. However, gintonin had no effect on hERG $K^+$ channel activity. These results show that gintonin-mediated enhancement of $I_{Ks}$ channel currents is achieved through binding of the $[Ca^{2+}]_i$/CaM complex to the C terminus of KCNQ1 subunit.
Keywords
ginseng; gintonin; heart; $I_{Ks}$ channel; LPA receptor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Salata, J.J., Jurkiewicz, N.K., Wang, J., Evans, B.E., Orme, H.T., and Sanguinetti, M.C. (1998). A novel benzodiazepine that activates cardiac slow delayed rectifier $K^+$ currents. Mol. Pharmacol. 54, 220-230.   DOI
2 Sanguinetti, M.C. (1999). Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann. N Y Acad. Sci. 868, 406-413.   DOI
3 Shamgar, L., Ma, L., Schmitt, N., Haitin, Y., Peretz, A., Wiener, R., Hirsch, J., Pongs, O., and Attali, B. (2006). Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ. Res. 98, 1055-1063.   DOI   ScienceOn
4 Tohse, N. (1990). Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells. Am. J. Physiol. 258, H1200-1207.
5 Yus-Najera, E., Santana-Castro, I., and Villarroel, A. (2002). The identification and characterization of a noncontinuouscalmodulinbinding site in noninactivating voltage-dependent KCNQ potassium channels. J. Biol. Chem. 277, 28545-28553.   DOI   ScienceOn
6 Lee, J.H., Jeong, S.M., Kim, J.H., Lee, B.H., Yoon, I.S., Lee, J.H., Choi, S.H., Kim, D.H., Rhim, H., Kim, S.S., et al. (2005). Characteristics of ginsenoside Rg3-mediated brain $Na^+$ current inhibition. Mol. Pharmacol. 68, 1114-1126.   DOI   ScienceOn
7 Lee, J.H., Lee, B.H., Choi, S.H., Yoon, I.S., Pyo, M.K., Shin, T.J., Choi, W.S., Lim, Y., Rhim, H., Won, K.H., et al. (2008). Ginsenoside $Rg_3$ inhibits human 1.4 channel currents by interacting with the Lys531 residue. Mol. Pharmacol. 73, 619-626.
8 Lee, J.H., Choi, S.H., Lee, B.H., Hwang, S.H., Kim, H.J., Rhee, J., Chung, C., andNah, S.Y. (2013). Activation of lysophosphatidic acid receptor by gintonin inhibits Kv1.2 channel activity: involvement of tyrosine kinase and receptor protein tyrosine phosphatase $\alpha$. Neurosci. Lett. 26, 143-148.
9 McCrossan, Z.A., and Abbott, G.W. (2004). The MinK-related peptides. Neuropharmacology 47, 787-821.   DOI   ScienceOn
10 Missan, S., Linsdell, P., and McDonald, T.F. (2006). Tyrosine kinase and phosphatase regulation of slow delayed-rectifier $K^+$ current in guinea-pig ventricular myocytes. J. Physiol. 1, 469-482.
11 Nitta, J., Furukawa, T., Marumo, F., Sawanobori, T., and Hiraoka, M. (1994). Subcellular mechanism for $Ca^{2+}$-dependent enhancement of delayed rectifier $K^+$ current in isolated membrane patches of guinea pig ventricular myocytes. Circ. Res. 74, 96-104.   DOI   ScienceOn
12 Fujisawa, S., Ono, K., andIijima T. (2000). Time-dependent block of the slowly activating delayed rectifier $K^+$ current by chromanol 293B in guinea-pig ventricular cells. Br. J. Pharmacol. 129, 1007-1013.   DOI   ScienceOn
13 Pyo, M.K., Choi, S.H., Hwang, S.H., Shin, T.J., Lee, B.H., Lee, S.M., Lim, Y.D., and Nah, S.Y. (2011). Novel glycoproteins from ginseng, J. Gingseng Res. 35, 92-103.   DOI   ScienceOn
14 Robbins, J. (2001). KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol. Ther. 90, 1-19.   DOI   ScienceOn
15 Choi, S.H., Lee, B.H., Hwang, S.H., Kim, H.J., Lee, S.M., Kim, H.C., Rhim, H.W., and Nah, S.Y. (2013). Molecular mechanisms of large-conductance $Ca^{2+}$-activated potassium channel activation by ginseng gintonin. Evid. Based Complement Alternat. Med. 2013, 323709.
16 Furukawa, T., Bai, C.X., Kaihara, A., Ozaki, E., Kawano, T., Nakaya, Y., Awais, M., Sato. M., Umezawa, Y., and Kurokawa, J. (2006). Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol. Pharmacol. 70, 1916-1924.   DOI   ScienceOn
17 Ghosh, S., Nunziato, D.A., and Pitt, G.S. (2006). KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin. Circ. Res. 98, 1048-1054.   DOI   ScienceOn
18 Hille, B. (2001). Ion channels of excitable membranes. Sinauer Associates, Inc. Sunderland, MA, 814.
19 Kang, S.Y., Schini-Kerth, V.B., and Kim, N.D. (1995). Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci. 56, 1577-1586.   DOI   ScienceOn
20 Hwang, S.H., Shin, T.J., Choi, S.H., Cho, H.J., Lee, B.H., Pyo, M.K.,Lee, J.H., Kang, J., Kim, H.J., Park, C.W., et al. (2012). Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein coupled lysophosphatidic acid receptors with high affinity. Mol. Cells 33, 151-162.   DOI   ScienceOn
21 Kim, N.D., Kang S.Y., Park, J.H., and Schini-Kerth, V.B. (1999). Ginsenoside $Rg_3$ mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of $K^+$ channels. Eur. J. Pharmacol. 367, 41-49.   DOI   ScienceOn
22 Attele, A.S., Wu, J.A., and Yuan, C.S. (1999). Ginseng pharmacology:multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693.   DOI   ScienceOn
23 Bai, C.X., Sunami, A., Namiki, T., Sawanobori, T., and Furukawa, T. (2003). Electrophysiological effects of ginseng and ginsenoside Re in guinea pig ventricular myocytes. Eur. J. Pharmacol. 476, 35-44.   DOI   ScienceOn
24 Bai, C.X., Takahashi, K., Masumiya, H., Sawanobori, T., and Furukawa, T. (2004). Nitric oxide-dependent modulation of the delayed rectifier $K^+$ current and the L-type $Ca^{2+}$ current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pig cardiomyocytes. Br. J. Pharmacol. 142, 567-575.   DOI   ScienceOn
25 Bian, J., Cui, J., and McDonald, T.V. (2001). HERG K+ channel activity is regulated by changes in phosphatidyl inositol 4,5- bisphosphate. Circ. Res. 89, 1168-1176.   DOI   ScienceOn
26 Kimura, Y., Schmitt, A., Fukushima, N., Ishii, I., Kimura, H., Nebreda, A.R., and Chun, J. (2001). Two vovelXenopus homologs of mammalian LPA1/EDG-2 function as lysophosphatidic acid receptors in Xenopus oocytes and mammalian cells. J. Biol. Chem. 276, 15208-15215.   DOI   ScienceOn
27 Chen, C.X., and Zhang, H.Y. (2009). Protective effect of ginsenoside Re on isoproterenol-induced triggered ventricular arrhythmia in rabbits. Zhongguo Dang Dai Er Ke Za Zhi. 11, 384-388.
28 Choi, S.H., Shi, T.J., Lee, B.H., Chu, D.H., Choe, H., Pyo, M.K., Hwang, S.H., Kim, B.R., Lee, S.M., Lee, J.H., et al. (2010). Ginsenoside $Rg_3$ activates human KCNQ1 $K^+$ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit. Eur. J. Pharmacol. 637, 138-147.   DOI   ScienceOn
29 Choi, S.H., Shin, T.J., Lee, B.H., Hwang, S.H., Lee, S.M., Lee, B.C., Park, C.S., Ha, T.S., and Nah, S.Y. (2011). Ginsenoside $Rg_3$ enhances large conductance $Ca^{2+}$-activated potassium channel currents: a role of Tyr360 residue. Mol. Cells 31,133-140.   DOI
30 Sanguinetti, M.C., Curran, M.E., Zou, A., Shen, J., Spector, P.S., Atkinson, D.L., and Keating, M.T. (1996). Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384, 80-83.   DOI   ScienceOn
31 Choi, S.H., Lee, J.H., Pyo, M.K., Lee, B.H., Shin, T.J., Hwang, S.H., Kim, B.R., Lee, S.M., Oh, J.W., Kim, H.C., et al. (2009). Mutations Leu427, Asn428, and Leu431 residues within transmembrane domain-I-segment 6 attenuate ginsenoside-mediated L-type $Ca^{2+}$ channel current inhibitions. Biol. Pharm. Bull. 32, 1224-1230.   DOI   ScienceOn