Browse > Article

Calcium Signaling of Dioleoyl Phosphatidic Acid via Endogenous LPA Receptors: A Study Using HCT116 and HT29 Human Colon Cancer Cell Lines  

Chang, Young-Ja (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University)
Kim, Hyo-Lim (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University)
Sacket, Santosh J. (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University)
Kim, Kye-Ok (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University)
Han, Mi-Jin (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University)
Jo, Ji-Yeong (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University)
Im, Dong-Soon (Laboratory of Pharmacology, College of Pharmacy (BK21 Project) and Research Institute for Drug Development, Pusan National University)
Publication Information
Biomolecules & Therapeutics / v.15, no.3, 2007 , pp. 150-155 More about this Journal
In the present study, we have tested the effect of dioleoyl phosphatidic acid (PA) on intracellular $Ca_{2+}$ concentration ($[Ca^{2+}]_{i}$) in two human colon cancer cell lines (HCT116 and HT29). PA and lysophosphatidic acid (LPA), a bioactive lysolipid, increased $[Ca^{2+}]_{i}$ in both HCT116 and HT29 cell lines. Increases of $[Ca^{2+}]_{i}$ by PA and LPA were more robust in HCT116 cells than in HT29 cells. A specific inhibitor of phospholipase C (U73122), however, was not inhibitory to the cell responses. Pertussis toxin, a specific inhibitor of $G_{i/o}$ type G proteins, however, had an inhibitory effect on the responses except for an LPA-induced one in HT29 cells. Ruthenium red, an inhibitor of the ryanodine receptor, was not inhibitory on the responses, however, 2-APB, a specific inhibitor of inositol 1,4,5-trisphosphate receptor, completely inhibited both lipid-induced $Ca^{2+}$ increases in both cell types. Furthermore, by using Ki16425 and VPC32183, two structurally dissimilar specific antagonists for $LPA_{1}/LPA_{3}$ receptors, an involvement of endogenous LPA receptors in the $Ca^{2+}$ responses was observed. Ki16425 completely inhibited the responses but the susceptibility to VPC32183 was different to PA and LPA in the two cell types. Expression levels of five LPA receptors in the HCT116 and HT29 cells were also assessed. Our data support the notion that PA could increase $[Ca^{2+}]_{i}$ in human colon cancer cells, probably via endogenous LPA receptors, G proteins and $IP_{3}$ receptors, thereby suggesting a role of PA as an intercellular lipid mediator.
phosphatidic acid; lysophosphatidic acid; G-protein-coupled receptor; calcium; $LPA_{1}$; $LPA_{3}$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Moritz, A., De Graan, P. N., Gispen, W. H. and Wirtz, K. W. (1992). Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J. Biol. Chem. 267, 7207-7210
2 An, S., Bleu, T., Hallmark, O. G. and Goetzl, E. J. (1998a). Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem. 273, 7906-7910   DOI   ScienceOn
3 An, S., Bleu, T., Zheng, Y. and Goetzl, E. J. (1998b). Recombinant human G protein-coupled lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol. Pharmacol. 54, 881-888   DOI
4 Barritt, G. J., Dalton, K. A. and Whiting, J. A. (1981). Evidence that phosphatidic acid stimulates the uptake of calcium by liver cells but not calcium release from mitochondria. FEBS Lett. 125, 137-140   DOI   ScienceOn
5 Bashir, N., Kuhen, K. and Taub, M. (1992). Phospholipids regulate growth and function of MDCK cells in hormonally defined serum free medium. In Vitro Cell Dev. Biol. 28A, 663-668   DOI
6 Chang, Y. J., Kim, Y. L., Lee, Y. K., Sacket, S. J., Kim, K., Kim, H. L., Han, M., Bae, Y. S., Okajima, F. and Im, D. S. (2007). Dioleoyl phosphatidic acid increases intracellular $Ca^{2+}$ through endogenous LPA receptors in C6 glioma and L2071 fibroblasts. Prostaglandins Other Lipid Mediat. 83, 268-276   DOI   ScienceOn
7 Durgam, G. G., Tsukahara, R., Makarova, N., Walker, M. D., Fujiwara, Y., Pigg, K. R., Baker, D. L., Sardar, V. M., Parrill, A. L., Tigyi, G. and Miller, D. D. (2006). Synthesis and pharmacological evaluation of second-generation phosphatidic acid derivatives as lysophosphatidic acid receptor ligands. Bioorg. Med. Chem. Lett. 16, 633-640   DOI   ScienceOn
8 English, D., Cui, Y. and Siddiqui, R. A. (1996). Messenger functions of phosphatidic acid. Chem. Phys. Lipids. 80, 117-132   DOI   ScienceOn
9 English, D., Martin, M., Harvey, K. A., Akard, L. P., Allen, R., Widlanski, T. S., Garcia, J. G. and Siddiqui, R. A. (1997). Characterization and purification of neutrophil ecto-phosphatidic acid phosphohydrolase. Biochem. J. 324 ( Pt 3), 941-950   DOI
10 Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. and Chen, J. (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 294, 1942-1945   DOI   ScienceOn
11 Fitzgerald, L. R., Dytko, G. M., Sarau, H. M., Mannan, I. J., Ellis, C., Lane, P. A., Tan, K. B., Murdock, P. R., Wilson, S., Bergsma, D. J., Ames, R. S., Foley, J. J., Campbell, D. A., McMillan, L., Evans, N., Elshourbagy, N. A., Minehart, H. and Tsui, P. (2000). Identification of an EDG7 variant, HOFNH30, a Gprotein-coupled receptor for lysophosphatidic acid. Biochem. Biophys. Res. Commun. 273, 805-810   DOI   ScienceOn
12 Gerrard, J. M., Butler, A. M., Peterson, D. A. and White, J. G. (1978). Phosphatidic acid releases calcium from a platelet membrane fraction in vitro. Prostaglandins Med. 1, 387-396   DOI   ScienceOn
13 Harris, R. A., Schmidt, J., Hitzemann, B. A. and Hitzemann, R. J. (1981). Phosphatidate as a molecular link between depolarization and neurotransmitter release in the brain. Science 212, 1290-1291   DOI
14 Hiramatsu, T., Sonoda, H., Takanezawa, Y., Morikawa, R., Ishida, M., Kasahara, K., Sanai, Y., Taguchi, R., Aoki, J. and Arai, H. (2003). Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase $A_{1}s$, mPA-$PLA_{1\alpha}$ and mPA-$PLA_{1\beta}$. J. Biol. Chem. 278, 49438-49447   DOI   ScienceOn
15 Jalink, K., van Corven, E. J. and Moolenaar, W. H. (1990). Lysophosphatidic acid, but not phosphatidic acid, is a potent $Ca^{2+}$-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J. Biol. Chem. 265, 12232-12239
16 Hornberger, T. A., Chu, W. K., Mak, Y. W., Hsiung, J. W., Huang, S. A. and Chien, S. (2006). The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 103, 4741-4746   DOI   ScienceOn
17 Chang, Y. J., Lee, Y. K., Lee, E. H., Park, J. J., Chung, S. K. and Im, D. S. (2006). Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and $Ca^{2+}$ in the U937 monocyte cell line. Arch. Pharm. Res. 29, 657-665   과학기술학회마을   DOI   ScienceOn
18 Imai, A., Ishizuka, Y., Kawai, K. and Nozawa, Y. (1982). Evidence for coupling of phosphatidic acid formation and calcium influx in thrombin-activated human platelets. Biochem. Biophys. Res. Commun. 108, 752-759   DOI   ScienceOn
19 Kajiyama, Y. and Ui, M. (1994). Switching from alpha 1- to betasubtypes in adrenergic response during primary culture of adult-rat hepatocytes as affected by the cell-to-cell interaction through plasma membranes. Biochem. J. 303 ( Pt 1), 313-321   DOI
20 Kawase, T. and Suzuki, A. (1988). Phosphatidic acid-induced calcium mobilization in osteoblasts. J. Biochem. (Tokyo) 103, 581-582   DOI
21 Kawase, T. and Suzuki, A. (1990). Initial responses of a clonal osteoblast-like cell line, MOB 3-4, to phosphatidic acid in vitro. Bone Miner. 10, 61-70   DOI   ScienceOn
22 Lee, C. H., Reisine, T. D. and Wax, M. B. (1989). Alterations of intracellular calcium in human non-pigmented ciliary epithelial cells of the eye. Exp. Eye Res. 48, 733-743   DOI   ScienceOn
23 Fernandez, B., Balboa, M. A., Solis-Herruzo, J. A. and Balsinde, J. (1994). Phosphatidate-induced arachidonic acid mobilization in mouse peritoneal macrophages. J. Biol. Chem. 269, 26711-26716
24 Fischer, D. J., Nusser, N., Virag, T., Yokoyama, K., Wang, D., Baker, D. L., Bautista, D., Parrill, A. L. and Tigyi, G. (2001). Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol. 60, 776-784
25 Kurz, T., Wolf, R. A. and Corr, P. B. (1993). Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes. Circ. Res. 72, 701-706   DOI   ScienceOn
26 Lee, C. W., Rivera, R., Gardell, S., Dubin, A. E. and Chun, J. (2006). GPR92 as a New $G_{12/13}$- and $G_{q}$-coupled Lysophosphatidic Acid Receptor That Increases cAMP, $LPA_{5}$. J. Biol. Chem. 281, 23589-23597   DOI   ScienceOn
27 Lee, C. W., Rivera, R., Dubin, A. E. and Chun, J. (2007). $LPA_{4}$/GPR23 is an LPA receptor utilizing $G_{s}$, $G_{q}$/$G_{i}$-mediated calcium signaling and $G_{12/13}$-mediated Rho activation. J. Biol. Chem. 282, 4310-4317   DOI   ScienceOn
28 McGhee, J. G. and Shoback, D. M. (1990). Effects of phosphatidic acid on parathyroid hormone release, intracellular free $Ca^{2+}$, and inositol phosphates in dispersed bovine parathyroid cells. Endocrinology 126, 899-907   DOI   ScienceOn
29 Huang, K. S., Li, S. and Low, M. G. (1991). Glycosylphosphatidylinositol-specific phospholipase D. Methods Enzymol. 197, 567-575   DOI
30 Ikeda, Y., Kikuchi, M., Toyama, K., Watanabe, K. and Ando, Y. (1979). Ionophoretic activities of phospholipids on human platelets. Thromb. Haemost. 41, 779-786
31 Im, D. S., Nagano, K., Katada, T., Okajima, F. and Ui, M. (2005). Differential change of Ins-$P_{3}$-$Ca^{2+}$ signaling during culture of rat hepatocytes. Cell Signal.17, 83-91   DOI   ScienceOn
32 Siddiqui, R. A. and Yang, Y. C. (1995). Interleukin-11 induces phosphatidic acid formation and activates MAP kinase in mouse 3T3-L1 cells. Cell Signal. 7, 247-2   DOI   ScienceOn
33 Siegmann, D. W. (1987). Stimulation of quiescent 3T3 cells by phosphatidic acid-containing liposomes. Biochem. Biophys. Res. Commun. 145, 228-233   DOI   ScienceOn
34 Knauss, T. C., Jaffer, F. E. and Abboud, H. E. (1990). Phosphatidic acid modulates DNA synthesis, phospholipase C, and platelet-derived growth factor mRNAs in cultured mesangial cells. Role of protein kinase C. J. Biol. Chem. 265, 14457-14463
35 Kotarsky, K., Boketoft, A., Bristulf, J., Nilsson, N. E., Norberg, A., Hansson, S., Sillard, R., Owman, C., Leeb-Lundberg, F. L. and Olde, B. (2006). Lysophosphatidic Acid Binds to and Activates Gpr92, a G Protein-Coupled Receptor Highly Expressed in Gastro-Intestinal Lymphocytes. J. Pharmacol. Exp. Ther. 318, 619-628   DOI   ScienceOn
36 Krabak, M. J. and Hui, S. W. (1991). The mitogenic activities of phosphatidate are acyl-chain-length dependent and calcium independent in C3H/10T1/2 cells. Cell Regul. 2, 57-64
37 Yanagida, K., Ishii, S., Hamano, F., Noguchi, K. and Shimizu, T. (2007). $LPA_{4}$/p2y9/GPR23 mediates Rho-dependent morphological changes in a rat neuronal cell line. J. Biol. Chem. 282, 5814-5824   DOI   ScienceOn
38 Osugi, T., Uchida, S., Watanabe, Y. and Yoshida, H. (1984). Differences in $Ca^{2+}$ mobilization induced by alpha-adrenergic agonist and phosphatidic acid in cultured hepatocytes. Life Sci. 35, 469-475   DOI   ScienceOn
39 Yun, M. R., Okajima, F. and Im, D. S. (2004). The action mode of lysophosphatidylcholine in human monocytes. J. Pharmacol. Sci. 94, 45-50   DOI   ScienceOn
40 Noguchi, K., Ishii, S. and Shimizu, T. (2003). Identification of p2y9/GPR23 as a novel G protein-coupled receptor for Lysophosphatidic acid, structurally distant from the Edg family. J. Biol. Chem. 278, 25600-25606   DOI   ScienceOn
41 Pearce, B., Jakobson, K., Morrow, C. and Murphy, S. (1994). Phosphatidic acid promotes phosphoinositide metabolism and DNA synthesis in cultured cortical astrocytes. Neurochem. Int. 24, 165-171   DOI   ScienceOn
42 Ryder, N. S., Talwar, H. S., Reynolds, N. J., Voorhees, J. J. and Fisher, G. J. (1993). Phosphatidic acid and phospholipase D both stimulate phosphoinositide turnover in cultured human keratinocytes. Cell Signal. 5, 787-794   DOI   ScienceOn
43 Weiss, S. J., McKinney, J. S. and Putney, J. W., Jr. (1982). Regulation of phosphatidate synthesis by secretagogues in parotid acinar cells. Biochem. J. 204, 587-592   DOI
44 Sonoda, H., Aoki, J., Hiramatsu, T., Ishida, M., Bandoh, K., Nagai, Y., Taguchi, R., Inoue, K. and Arai, H. (2002). A novel phosphatidic acid-selective phospholipase $A_{1}$ that produces lysophosphatidic acid. J. Biol. Chem. 277, 34254-34263   DOI   ScienceOn
45 Stace, C. L. and Ktistakis, N. T. (2006). Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta. 1761, 913-926   DOI   ScienceOn
46 van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T. and Moolenaar, W. H. (1989). Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59, 45-54   DOI   ScienceOn
47 Wood, C. A., Padmore, L. and Radda, G. K. (1993). The effect of phosphatidic acid on the proliferation of Swiss 3T3 cells. Biochem. Soc. Trans. 21, 369S   DOI