• Title/Summary/Keyword: phosphate limitation

Search Result 66, Processing Time 0.032 seconds

The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy

  • Cho, Eunae Sandra;Cha, Yong Hoon;Kim, Hyun Sil;Kim, Nam Hee;Yook, Jong In
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.

Summer Pattern of Phytoplankton Distribution at a Station in Jangmok Bay

  • Lee, Won-Je;Shin, Kyoung-Soon;Jang, Pung-Guk;Jang, Min-Chul;Park, Nam-Joo
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.109-117
    • /
    • 2005
  • Daily changes in phytoplankton abundance and species composition were monitored from July to September 2003 (n=47) to understand which factors control the abundance at a station in Jangmok Bay. During the study, the phytoplankton community was mainly composed of small cell diatoms and dinoflagellates, and the dominant genera were Chaetoceros, Nitzschia, Skeletonema and Thalassionema. Phytoplankton abundance varied significantly from $6.40{\times}10^4$ to $1.22{\times}10^7$ cells/l. The initially high level of phytoplankton abundance was dominated by diatoms, but replacement by dinoflagellates started when the NIP ratio decreased to <5.0. On the basis of the N/P and Si/N ratios, the sampling periofd could be divided into two: an inorganic silicate limitation period (ISLP, $14^{th}$ $July-12^{th}$ of August) and an inorganic nitrogen limitation period (INLP, $13^{th}$ of August - the end of the study). Phosphate might not limit the growth of phytoplankton assemblages in the bay during the study period. This study suggests that phytoplankton abundance and species composition might be affected by the concentrations of inorganic nutrients (N and Si), and provides baseline information for further studies on plankton dynamics in Jangmok Bay.

Phosphatase Activity in Cheonho Reservoir

  • Kwag, No-Tae;Son, Jae-Hak;Lee, Jeong-Sub;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.267-272
    • /
    • 1995
  • Phosphatase activity was measured with other environmental factors in Cheonho reservoir in 1994. It ranged form 95 to 1,685 nM/1/h and was correlated significantly with chlorophyll-a. Such a close relation well matched the fact that over 90% of phosphatase activity was detected in > 3 $\mu\textrm{m}$ fraction. The phosphatase activity also correlated negatively with dissolved inorganic phosphate concentration, which implies derepression of phosphatase production by phosphate limitation. Significant correlation was analyzed between phosphatase activity and BOD, which also appeared to be closely correlated with chlorophyll-a. A great percentage of organic materials seems to be generated autochthonously by algae and extracellular enzyme even though allochthonous influence was thought to be stronger in Cheonho reservoir.

  • PDF

Isolation of Pseudomonas putida BM01 Accumulating High Amount of $PHA_{MCL}$

  • Song, Jae-Jun;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.126-133
    • /
    • 1994
  • A Pseudomonas putida strain able to accumulate high amount of polyesters of medium-chain-length 3-hydroxyalkanoic acids ($PHA_{MCL)$) was isolated from soil in a landfill site using an enrichment technique. Culture condition of the isolated strain for polyester production in a one-step culture was optimized in a mineral-salts medium against pH and concentrations of ammonium sulfate, carbon source(e.g., octanoate), and phosphate. The optimal values for maximal cell growth and PHA accumulation were: pH; 7$\sim$8, $(NH_4)_2SO_4$; 8 mM, octanoate; 40 mM. The optimum temperature was in the range of $20\sim30^{\circ}C$, which was rather broader than in other bacteria. Cell growth was strongly inhibited by the phosphate limitation to less than 1 mM. An increase of phosphate concentration above 1 mM showed little effect on cell growth and polyester accumulation. When the strain was grown on octanoate under this optimized condition it produced 3.4 g dry biomass per liter and yielded 1.7 g PHA per liter amounting to 53 wt% of dry cells. The monomer units composing the polyester synthesized from octanoate were 3-hydroxyoctanoate (3HO), 3-hydroxycaproate (3HC), and 3-hydroxybutyrate (3HB) (85:13:2, mole ratio). Other low linear $C_3\simC_{10}$ monocarboxylic acids were also tested for polyester production.

  • PDF

Sequestration of Orthophosphate by D(+)-Mannose Feeding Increases Nonphotochemical Quenchings in Chinese Cabbage Leaves (Mannose 처리된 배추 잎의 무기인산 감소에 따른 비광화학성 소산의 증가)

  • 박연일
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.303-309
    • /
    • 1991
  • Limitation of photosynthesis in detached Chinese cabbage (Brassica campestris L.) leaves was induced by feeding of mannose (25 mM) for 12 h in the light, and changes in the basic thylakoid functions under this condition were investigated. The acid soluble phosphate contend and CO2 uptake rate was decreased by 66% and 67%, respectively. However, the starch content was increased by 24% compared to those of controls. From the fast induction curves of chlorophyll fluorescence, dark level fluorescence (Fo) slightly increased while intermediate plateau fluorescence level (FI) to peak level fluorescence (Fp) transient was significantly decreased with a slight decrease in the Fo-to-FI transient. This data means that reduction of secondary electron acceptor of PSII (QB) might be more severely inhibited than that of primary electron acceptor of PSII (QA) by decrease in phosphate level. The strong decline of (Fv)m//Fm ratio suggests that efficiency of excitation energy capture by PSII was decreased markedly. The quenching of Fo (qO), an indicator of state transition, was also occurred over the slow induction kinetics of chlorophyll fluorescence. From quenching analysis, fluorescence was dominantly quenched by nonphotochemical quenchings (qE+qT). These results showed that the capture and transfer efficiency of excitation energy to PSII reaction center in thylakoid was decreased with the decline of leaf phosphate level, and that the state transition was occurred during the induction of photosynthesis under these conditions.

  • PDF

Assessment of Nutrient and Light Limitation of Phytoplankton in the Youngsan Lake (영산호 식물플랑크톤 변동에 대한 영양염과 광 제한의 상대적 평가)

  • Song, Eun-Sook;Shin, Yong-Sik;Jang, Nam-Ik;Lee, Jun-Bae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • Nutrient limitation and light limitation was examined for the Youngsan Lake by collecting chlorophyll $\alpha$ and other properties including light intensity, nutrient concentrations, pheopigment ratio monthly from March, 2003 to April, 2004 (except for November-January). Chlorophyll $\alpha$ was fractionated into net-(>$20\;{\mu}m$) and nano-size(<$20\;{\mu}$). Light and nutrient limitation index was calculated based on the equations incorporating the mechanisms of limitation of light and nutrients from the literature. Phytoplankton population (chlorophyll $\alpha$) was low during the wet season especially in August and increased in short-period during other seasons. Photoperiod was short during the wet season but long during the dry season. Nutrients such as phosphate and ammonium were rapidly increased in spring, 2004. Light limitation index was minimum (0.01) in August during the wet season and nutrient limitation index was relatively high (>0.4) except for May and September. Light limitation may affect phytoplankton growth rather than nutrient limitation considering that nutrient levels are high in the Youngsan Lake. Results of correlation analyses showed a negative correlation between light and nutrient limitation indices and net-pheopigment index, and a positive correlation between the indices and nano-pheopigment index. These results suggest that phytoplankton response to change of light and nutrient may be size-dependant.

Effect of Nutrient Limitation on Lipid Content and Fatty Acid Composition of Mutant Chlamydomonas reinhardtii (돌연변이 Chlamydomonas reinhardtii의 영양분 제한에 따른 지질 생산 및 지방산 조성 변화 연구)

  • Baek, Jaewon;Choi, Jong-il
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.91-95
    • /
    • 2015
  • Production of biodiesel from microalgae is dependent on the microalgal lipid content and free fatty acid composition. Both lipid and free fatty acid are regulated by nutrient sources. In this study, newly developed mutant Chlamydomonas reinhardtii with higher lipid content was investigated for the effect of nutrient limitation. Nitrogen $NO_3{^{-}}$ and phosphate $PO_4{^{3-}}$ were limited for nutrient starvation during the cultivation. Under nutrient starvation, total lipid content level was increased to 27~33% and C16:0 fatty acid content constituted over 31~43% of total fatty acid. Interestingly, we also found that the expression of fatty acid desaturase (FAD7) was decreased when nutrients were starved.

Luxurious Phosphorus and Phosphorus Limitation for Epiphytic and Planktonic Algal Growth in Reed Zones of Lake Biwa

  • Osamu, Mitamura;Choi, Jun-Kil
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.554-562
    • /
    • 2008
  • To evaluate the limitation for epiphytic and planktonic algal growth, acid extractable inorganic phosphorus (AP), implying the luxury uptake phosphorus, was measured in five reed zones of Lake Biwa. The AP in epiphytic substances was 0.7 to 1.4 mg P surface stem $m^{-2}$ in summer and 1.2 to 2.8 mg P $m^{-2}$ in winter. On the other hand, the amount in planktonic substances was 1.4 to 5.7 mg P m -3 and 0.8 to 5.4 mg P $m^{-3}$ in both seasons. Contribution of AP in the epiphytic and planktonic phosphorus was 23 to 31% and 8 to 27% in summer, and 17 to 22% and 9 to 17% in winter. It suggests that in summer both epiphytic and planktonic algae had been luxuriously taken up phosphate into cells. The weight ratios of C : N : P were averaged 79 : 20 : 1 for the epiphytic substances and 81 : 12 : 1 for the particulate substances. On the other hand, the ratios without the luxurious phosphorus were 93 : 24 : 1 and 103 : 15 : 1, showing much higher values than the Redfield ratio. High ratio in the epiphytic substances indicates that the phosphorus is the limiting parameter, rather than nitrogen, regulating the growth of epiphytic algal populations.

Functional Analysis of an Antibiotic Regulatory Gene, afsR2 in S. lividans through DNA microarray System (DNA 마이크로어레이 시스템 분석을 통한 S. lividans 유래 항생제 조절유전자 afsR2 기능 분석)

  • Kim, Chang-Young;Noh, Jun-Hee;Lee, Han-Na;Kim, Eung-Soo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2009
  • AfsR2 in Streptomyces lividans, a 63-amino acid protein with limited sequence homology to Streptomyces sigma factors, has been known for a global regulatory protein stimulating multiple antibiotic biosynthetic pathways. Although the detailed regulatory mechanism of AfsK-AfsR-AfsR2 system has been well characterized, very little information about the AfsR2-dependent down-stream regulatory genes were characterized. Recently, the null mutant of afsS in S. coelicolor (the identical ortholog of afsR2) has been characterized through DNA microarray system, revealing that afsS deletion regulated several genes involved in antibiotic biosynthesis as well as phosphate-starvation. Through comparative DNA microarray analysis of afsR2-overexpressed S. lividans, here we also identify several afsR2-dependent genes involved in phosphate starvation, morphological differentiation, and antibiotic regulation in S. lividans, confirming that the AfsR2 plays an important pleiotrophic regulatory role in Streptomyces species.

Effects of environmental factors on the extracellular release of photosynthetic products by scenedesmus quadricauda (Scenedesmus quadricauda에 의한 광합성 산물의 세포 외 배출에 미치는 환경요인의 영향)

  • 강찬수;김상종;이인권;권오섭
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.373-377
    • /
    • 1989
  • The effects of environmental factors on the extracellular release of organic carbon by Scenedesmus qudricauda were studied. The PER (percentage extracellular release) was greater at high temperature and at high concentration of nitrogen and phosphate. The PER variation according to the change of M/P ratio showed high values at each extreme N/P ratio. This result suggested that the limitation of nitrogen or phosphorous resulted in the accumulation of carbohydrates as photosynthetic products, and the products in high concentration were excreted through algal cell membrane.

  • PDF