Browse > Article

Luxurious Phosphorus and Phosphorus Limitation for Epiphytic and Planktonic Algal Growth in Reed Zones of Lake Biwa  

Osamu, Mitamura (Limnological Laboratory, School of Environmental Science, University of Shiga Prefecture)
Choi, Jun-Kil (Department of Biological Science, Sangji University)
Publication Information
Abstract
To evaluate the limitation for epiphytic and planktonic algal growth, acid extractable inorganic phosphorus (AP), implying the luxury uptake phosphorus, was measured in five reed zones of Lake Biwa. The AP in epiphytic substances was 0.7 to 1.4 mg P surface stem $m^{-2}$ in summer and 1.2 to 2.8 mg P $m^{-2}$ in winter. On the other hand, the amount in planktonic substances was 1.4 to 5.7 mg P m -3 and 0.8 to 5.4 mg P $m^{-3}$ in both seasons. Contribution of AP in the epiphytic and planktonic phosphorus was 23 to 31% and 8 to 27% in summer, and 17 to 22% and 9 to 17% in winter. It suggests that in summer both epiphytic and planktonic algae had been luxuriously taken up phosphate into cells. The weight ratios of C : N : P were averaged 79 : 20 : 1 for the epiphytic substances and 81 : 12 : 1 for the particulate substances. On the other hand, the ratios without the luxurious phosphorus were 93 : 24 : 1 and 103 : 15 : 1, showing much higher values than the Redfield ratio. High ratio in the epiphytic substances indicates that the phosphorus is the limiting parameter, rather than nitrogen, regulating the growth of epiphytic algal populations.
Keywords
luxurious phosphorus; phosphorus limitation; epiphytic and planktonic algae; reed zone; Lake Biwa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brown, E.J. and D.K. Button. 1979. Phosphate limited growth kinetics of Selenastrum capricoruntum (Chlorophyceae). J. Phycol. 15: 305-311   DOI
2 Fu, F.X., Y. Zhang and K. Leblanc. 2005. The biological and biogeochemical consequences of phosphate scavenging onto phytoplankton cell surface. Limnol. Oceanogr. 50: 1459-1472   DOI   ScienceOn
3 Jansson, M., H. Olsson and K. Pettersson. 1988. Phosphatases: origin, characteristics and function in lakes. Hydrobiologia 170: 157-175   DOI   ScienceOn
4 Menzel, D.W. and N. Corwin. 1965. The determination of total phosphorus in seawater based on the liberation of organically bound fraction by persulfate oxidation. Limnol. Oceanogr. 10: 280-283   DOI   ScienceOn
5 Menzel, D.W. and R.F. Vaccaro. 1964. The measurement of dissolved organic and particulate carbon in seawater. Limnol. Oceanogr. 9: 138-142   DOI   ScienceOn
6 Mitamura, O. 1994. Determination of dissolved organic nitrogen in freshwater samples based on Kjeldahl digestion. Jpn. J. Limnol. 55: 39-45   DOI
7 Sagi, T. 1966. Determination of ammonia in sea water by the indophenol method and its application to the coastal and off-shore waters. Oceanogr. Mag. 18: 43-51
8 Sakushaug, E., K. Andresen, S. Myklestad and Y. Olsen. 1983. Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish and fresh) as revealed by their chemical composition. J. Plankton Res. 5: 175-196   DOI
9 Goldman, C.R. 1960. Primary productivity and limiting factors in three lakes of the Alaskan peninsula. Ecol. Monogr. 30: 207-270   DOI   ScienceOn
10 Healey, F.P. and L.L. Hendzel. 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish. Aquat. Sci. 37: 442-453   DOI
11 Satoh, Y., T. Katano, T. Satoh, O. Mitamura, K. Anbutsu, S. Nakano, H. Ueno, M. Kihira, V. Drucker, Y. Tanaka, T. Mimura, Y. Watanabe and M. Sugiyama. 2006. Nutrient limitation of the primary production of phytoplankton in Lake Baikal. Limnology 7: 225-229   DOI
12 Quigg, A., Z.V. Finkel, A.J. Irwin, Y. Rosenthal, T.Y. Ho, J.R. Reinfelder, O. Schofield, F.M.M. Morel and P.G. Falkowski. 2003. The evolution inheritance of elemental stoichiometry in marine phytoplankton. Nature 425: 291-294   DOI   ScienceOn
13 Tezuka, Y. 1985. C :N: P ratios of seston in Lake Biwa as indicators of nutrient deficiency in plankton and decomposition process of hypolimnetic particulate matter. Jpn. J. Limnol. 46: 239-246   DOI
14 Wood, E.D., F.A.J. Armstrong and F.A. Richards. 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. mar. biol. Ass. U.K. 47: 23-31   DOI
15 Mitamura, O., H. Maeda and M. Kawashima. 1999. Seasonal change in photosynthetic activity of photoautotrophic picoplankton in Lake Biwa. Jpn J. Limnol. 60: 453-467   DOI   ScienceOn
16 Nakanishi, M., O. Mitamura and T. Matsubara. 1990. Sestonic C : N : P ratios in the south basin of Lake Biwa with special attention to nutritional state of phytoplankton. Jpn. J. Limnol. 51: 185-189   DOI
17 Bendschneider, K. and R.J. Robinson. 1952. A new spectrophotometric method for the determination of nitrite in sea water. J. Mar. Res. 11: 87-96
18 Eixler, S., U. Selig and U. Karsten. 2005. Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms. Hydrobiologia 533: 135-143   DOI
19 Berman, T. and D.A. Bronk. 2003. Dissolved organic nitrogen: A dynamic participant in aquatic ecosystems. Aquatic Microbial Ecol. 31: 279-305   DOI   ScienceOn
20 Senft, W.H. 1978. Dependence of light-saturated rates of algal photosynthesis on intracellular concentrations of phosphorus. Limnol. Oceanogr. 23: 709-718   DOI   ScienceOn
21 Muller, U. 1995. Vertical zonation and production rates of epiphytic algae on Phragmites australis. Freshwat. Biol. 34: 69-80   DOI   ScienceOn
22 Reichardt, W., J. Overbeck and L. Steubing. 1967. Free dissolved enzymes in lake waters. Nature 216: 1345-1347   DOI
23 Seike, Y., S. Nakano, M. Okumura, A. Hirayama, O. Mitamura, K. Fujinaga, M. Nakanishi, H. Hashitani and M. Kumagai. 1996. Temporal variations in the nutritional state of phytoplankton communities in Lake Biwa due to Typhoons. Jpn. J. Limnol. 57: 485-492   DOI
24 Holmboe, N., H.S. Jensen and F.O. Andersen. 1999. Nutrient addition bioassays as indicators of nutrient limitation of phytoplankton in a eutrophic estuary. Mar. Ecol. Prog. Ser. 186: 95-104   DOI
25 Redfield, A.C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205-221
26 Stewart, W.D. and G. Alexander. 1971. Phosphorus availability and nitrogenase activity in aquatic blue-green algae. Freshwat. Biol. 1: 389-404   DOI
27 Forsberg, C. and S.O. Ryding. 1980. Eutrophication parameters and trophic state indices in 30 Swedish wast-receiving lakes. Arch. Hydrobiol. 89: 189-207
28 SCOR/Unesco Working Group 17. 1966. Determination of photosynthetic pigments in sea water. UNESCO 69pp
29 Newell, B.S., B. Morgan and J. Cundy. 1967. The determination of urea in seawater. J. Mar. Res. 25: 201-202
30 Tilman, D. and S.S. Kilham. 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semi-continuous culture. J. Phycol. 12: 375-383
31 Saijo, Y. and O. Mitamura. 1995. Guideline for Limnological Research (Shinpen Koshochosaho) (in Japanese). Kodansha pp. 238
32 Sanudo-Wilhelmy, S.A., A. Tover-Sanchez, F.X. Fu, D.G. Capone, E.J. Carpenter and D.A. Hutchins. 2004. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature 432: 897-901   DOI   ScienceOn
33 Fitzgerald, G.P. and T.C. Nelson. 1966. Extractive and enzymatic analyses for limiting or surplus phosphorus in algae. J. Phycol. 2: 32-37   DOI
34 Mullin, J.B. and J.P. Riley. 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Anal. Chim. Acta 12: 162-176   DOI   ScienceOn
35 Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36   DOI   ScienceOn
36 Hecky, R.E., P. Campbell and L.L. Hendzel. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709-724   DOI   ScienceOn
37 Guildford, S.J. and R.E. Hecky. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol. Oceanogr. 45: 1213-1223   DOI   ScienceOn