Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.179

The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy  

Cho, Eunae Sandra (Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry)
Cha, Yong Hoon (Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry)
Kim, Hyun Sil (Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry)
Kim, Nam Hee (Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry)
Yook, Jong In (Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry)
Publication Information
Biomolecules & Therapeutics / v.26, no.1, 2018 , pp. 29-38 More about this Journal
Abstract
During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.
Keywords
Pentose phosphate pathway; NADPH; Glucose-6-phosphate dehydrogenase; Snail; Epithelial-mesenchymal transition;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kang, S. W., Lee, S. and Lee, E. K. (2015) ROS and energy metabolism in cancer cells: alliance for fast growth. Arch. Pharm. Res. 38, 338-345.   DOI
2 Kim, N. H., Cha, Y. H., Lee, J., Lee, S. H., Yang, J. H., Yun, J. S., Cho, E. S., Zhang, X., Nam, M., Kim, N., Yuk, Y. S., Cha, S. Y., Lee, Y., Ryu, J. K., Park, S., Cheong, J. H., Kang, S. W., Kim, S. Y., Hwang, G. S., Yook, J. I. and Kim, H. S. (2017) Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat. Commun. 8, 14374.   DOI
3 Kim, N. H., Kim, H. S., Li, X. Y., Lee, I., Choi, H. S., Kang, S. E., Cha, S. Y., Ryu, J. K., Yoon, D., Fearon, E. R., Rowe, R. G., Lee, S., Maher, C. A., Weiss, S. J. and Yook, J. I. (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195, 417-433.   DOI
4 Kim, S. Y. (2015) Cancer metabolism: targeting cancer universality. Arch. Pharm. Res. 38, 299-301.   DOI
5 Stanton, R. C., Seifter, J. L., Boxer, D. C., Zimmerman, E. and Cantley, L. C. (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J. Biol. Chem. 266, 12442-12448.
6 Tarin, D., Price, J. E., Kettlewell, M. G., Souter, R. G., Vass, A. C. and Crossley, B. (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 44, 3584-3592.
7 Tian, W. N., Braunstein, L. D., Pang, J., Stuhlmeier, K. M., Xi, Q. C., Tian, X. and Stanton, R. C. (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol. Chem. 273, 10609-10617.   DOI
8 Ko, Y. H., Domingo-Vidal, M., Roche, M., Lin, Z., Whitaker-Menezes, D., Seifert, E., Capparelli, C., Tuluc, M., Birbe, R. C., Tassone, P., Curry, J. M., Navarro-Sabate, A., Manzano, A., Bartrons, R., Caro, J. and Martinez-Outschoorn, U. (2016) TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically reprograms carcinoma and stromal cells in breast cancer. J. Biol. Chem. 291, 26291-26303.   DOI
9 Koppenol, W. H., Bounds, P. L. and Dang, C. V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337.   DOI
10 Kruiswijk, F., Labuschagne, C. F. and Vousden, K. H. (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393-405.   DOI
11 Valastyan, S. and Weinberg, R. A. (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292.   DOI
12 Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.   DOI
13 Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., Sharfi, H., Heffron, G. J., Amador-Noguez, D., Christofk, H. R., Wagner, G., Rabinowitz, J. D., Asara, J. M. and Cantley, L. C. (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492-1499.
14 Wang, H., Nicolay, B. N., Chick, J. M., Gao, X., Geng, Y., Ren, H., Gao, H., Yang, G., Williams, J. A., Suski, J. M., Keibler, M. A., Sicinska, E., Gerdemann, U., Haining, W. N., Roberts, T. M., Polyak, K., Gygi, S. P., Dyson, N. J. and Sicinski, P. (2017) The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature 546, 426-430.   DOI
15 Warburg, O. (1956) On the origin of cancer cells. Science 123, 309-314.   DOI
16 Ward, P. S. and Thompson, C. B. (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308.   DOI
17 Lin, R., Elf, S., Shan, C., Kang, H. B., Ji, Q., Zhou, L., Hitosugi, T., Zhang, L., Zhang, S., Seo, J. H., Xie, J., Tucker, M., Gu, T. L., Sudderth, J., Jiang, L., Mitsche, M., DeBerardinis, R. J., Wu, S., Li, Y., Mao, H., Chen, P. R., Wang, D., Chen, G. Z., Hurwitz, S. J., Lonial, S., Arellano, M. L., Khoury, H. J., Khuri, F. R., Lee, B. H., Lei, Q., Brat, D. J., Ye, K., Boggon, T. J., He, C., Kang, S., Fan, J. and Chen, J. (2015) 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat. Cell Biol. 17, 1484-1496.   DOI
18 Li, B., Qiu, B., Lee, D. S., Walton, Z. E., Ochocki, J. D., Mathew, L. K., Mancuso, A., Gade, T. P., Keith, B., Nissim, I. and Simon, M. C. (2014) Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251-255.   DOI
19 Li, H. and Jogl, G. (2009) Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J. Biol. Chem. 284, 1748-1754.
20 Wong, C. W., Lee, A., Shientag, L., Yu, J., Dong, Y., Kao, G., Al-Mehdi, A. B., Bernhard, E. J. and Muschel, R. J. (2001) Apoptosis: an early event in metastatic inefficiency. Cancer Res. 61, 333-338.
21 Locasale, J. W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-583.   DOI
22 Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F. and Groom, A. C. (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865-873.   DOI
23 Mor, I., Cheung, E. C. and Vousden, K. H. (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb. Symp. Quant. Biol. 76, 211-216.
24 Clem, B., Telang, S., Clem, A., Yalcin, A., Meier, J., Simmons, A., Rasku, M. A., Arumugam, S., Dean, W. L., Eaton, J., Lane, A., Trent, J. O. and Chesney, J. (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 7, 110-120.   DOI
25 Yi, W., Clark, P. M., Mason, D. E., Keenan, M. C., Hill, C., Goddard, W. A., 3rd, Peters, E. C., Driggers, E. M. and Hsieh-Wilson, L. C. (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337, 975-980.   DOI
26 Zhang, J., Wang, J., Xing, H., Li, Q., Zhao, Q. and Li, J. (2016) Downregulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells. Mol. Cell. Biochem. 411, 331-340.
27 Chandel, N. S., Budinger, G. R., Choe, S. H. and Schumacker, P. T. (1997) Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 272, 18808-18816.
28 Cheung, E. C., Ludwig, R. L. and Vousden, K. H. (2012) Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. U.S.A. 109, 20491-20496.   DOI
29 Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L. and Cantley, L. C. (2008a) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230-233.
30 Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. and Cantley, L. C. (2008b) Pyruvate kinase M2 is a phosphotyrosinebinding protein. Nature 452, 181-186.   DOI
31 Cocco, P., Carta, P., Flore, C., Congia, P., Manca, M. B., Saba, G. and Salis, S. (1996) Mortality of lead smelter workers with the glucose-6-phosphate dehydrogenase-deficient phenotype. Cancer Epidemiol. Biomarkers Prev. 5, 223-225.
32 Cocco, P., Manca, P. and Dessi, S. (1987) Preliminary results of a geographic correlation study on G6PD deficiency and cancer. Toxicol. Pathol. 15, 106-108.   DOI
33 Decrock, E., Hoorelbeke, D., Ramadan, R., Delvaeye, T., De Bock, M., Wang, N., Krysko, D. V., Baatout, S., Bultynck, G., Aerts, A., Vinken, M. and Leybaert, L. (2017) Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochim. Biophys. Acta 1864, 1099-1120.
34 Pandolfi, P. P., Sonati, F., Rivi, R., Mason, P., Grosveld, F. and Luzzatto, L. (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 14, 5209-5215.
35 Mullarky, E., Lucki, N. C., Beheshti Zavareh, R., Anglin, J. L., Gomes, A. P., Nicolay, B. N., Wong, J. C., Christen, S., Takahashi, H., Singh, P. K., Blenis, J., Warren, J. D., Fendt, S. M., Asara, J. M., DeNicola, G. M., Lyssiotis, C. A., Lairson, L. L. and Cantley, L. C. (2016) Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl. Acad. Sci. U.S.A. 113, 1778-1783.   DOI
36 Nkhoma, E. T., Poole, C., Vannappagari, V., Hall, S. A. and Beutler, E. (2009) The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol. Dis. 42, 267-278.   DOI
37 Nogueira, V. and Hay, N. (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 19, 4309-4314.   DOI
38 Pacold, M. E., Brimacombe, K. R., Chan, S. H., Rohde, J. M., Lewis, C. A., Swier, L. J., Possemato, R., Chen, W. W., Sullivan, L. B., Fiske, B. P., Cho, S., Freinkman, E., Birsoy, K., Abu-Remaileh, M., Shaul, Y. D., Liu, C. M., Zhou, M., Koh, M. J., Chung, H., Davidson, S. M., Luengo, A., Wang, A. Q., Xu, X., Yasgar, A., Liu, L., Rai, G., Westover, K. D., Vander Heiden, M. G., Shen, M., Gray, N. S., Boxer, M. B. and Sabatini, D. M. (2016) A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452-458.   DOI
39 Paglialunga, F., Fico, A., Iaccarino, I., Notaro, R., Luzzatto, L., Martini, G. and Filosa, S. (2004) G6PD is indispensable for erythropoiesis after the embryonic-adult hemoglobin switch. Blood 104, 3148-3152.
40 Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J.-K., Shen, M., Bellinger, G., Sasaki, A. T., Locasale, J. W., Auld, D. S., Thomas, C. J., Vander Heiden, M. G. and Cantley, L. C. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278-1283.   DOI
41 Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K. H. (2006) TIGAR, a p53- inducible regulator of glycolysis and apoptosis. Cell 126, 107-120.   DOI
42 Berg, J. M., Tymoczko, J. L. and Stryer, L. (2010) Biochemistry. W. H. Freeman, New York.
43 Bokun, R., Bakotin, J. and Milasinovic, D. (1987) Semiquantitative cytochemical estimation of glucose-6-phosphate dehydrogenase activity in benign diseases and carcinoma of the breast. Acta Cytol. 31, 249-252.
44 Bouzier-Sore, A. K. and Bolanos, J. P. (2015) Uncertainties in pentosephosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Front. Aging Neurosci. 7, 89.
45 Cabezas, H., Raposo, R. R. and Melendez-Hevia, E. (1999) Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol. Cell. Biochem. 201, 57-63.   DOI
46 Carson, P. E., Flanagan, C. L., Ickes, C. E. and Alving, A. S. (1956) Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124, 484-485.
47 Cha, Y. H., Yook, J. I., Kim, H. S. and Kim, N. H. (2015) Catabolic metabolism during cancer EMT. Arch. Pharm. Res. 38, 313-320.   DOI
48 Chambers, A. F., Groom, A. C. and MacDonald, I. C. (2002) Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563-572.   DOI
49 Diehn, M., Cho, R. W., Lobo, N. A., Kalisky, T., Dorie, M. J., Kulp, A. N., Qian, D., Lam, J. S., Ailles, L. E., Wong, M., Joshua, B., Kaplan, M. J., Wapnir, I., Dirbas, F. M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S. K., Quake, S. R., Brown, J. M., Weissman, I. L. and Clarke, M. F. (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780-783.
50 Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S. and Maley, C. C. (2013) Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883-892.   DOI
51 Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W., Miriyala, S., Lin, Y., Yao, J., Shi, J., Kang, T., Lorkiewicz, P., St Clair, D., Hung, M. C., Evers, B. M. and Zhou, B. P. (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316-331.   DOI
52 Dore, M. P., Davoli, A., Longo, N., Marras, G. and Pes, G. M. (2016) Glucose-6-phosphate dehydrogenase deficiency and risk of colorectal cancer in Northern Sardinia: A retrospective observational study. Medicine (Baltimore) 95, e5254.   DOI
53 Du, W., Jiang, P., Mancuso, A., Stonestrom, A., Brewer, M. D., Minn, A. J., Mak, T. W., Wu, M. and Yang, X. (2013) TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat. Cell Biol. 15, 991-1000.   DOI
54 Fan, J., Ye, J., Kamphorst, J. J., Shlomi, T., Thompson, C. B. and Rabinowitz, J. D. (2014) Quantitative flux analysis reveals folatedependent NADPH production. Nature 510, 298-302.   DOI
55 Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.   DOI
56 Gordon, G., Mackow, M. C. and Levy, H. R. (1995) On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase. Arch. Biochem. Biophys. 318, 25-29.   DOI
57 Riganti, C., Gazzano, E., Polimeni, M., Aldieri, E. and Ghigo, D. (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic. Biol. Med. 53, 421-436.   DOI
58 Preuss, J., Richardson, A. D., Pinkerton, A., Hedrick, M., Sergienko, E., Rahlfs, S., Becker, K. and Bode, L. (2013) Identification and characterization of novel human glucose-6-phosphate dehydrogenase inhibitors. J. Biomol. Screen. 18, 286-297.   DOI
59 Ramanathan, B., Jan, K. Y., Chen, C. H., Hour, T. C., Yu, H. J. and Pu, Y. S. (2005) Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res. 65, 8455-8460.   DOI
60 Jiang, P., Du, W., Wang, X., Mancuso, A., Gao, X., Wu, M. and Yang, X. (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310-316.   DOI
61 Ros, S., Santos, C. R., Moco, S., Baenke, F., Kelly, G., Howell, M., Zamboni, N. and Schulze, A. (2012) Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2, 328-343.
62 Ros, S. and Schulze, A. (2013) Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 1, 8.   DOI
63 Schafer, Z. T., Grassian, A. R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H. Y., Gao, S., Puigserver, P. and Brugge, J. S. (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461, 109-113.   DOI
64 Singh, S., An, A. and Srivastava, P. K. (2012) Regulation and properties of glucose-6-phosphate dehydrogenase: a review. Int. J. Plant Physiol. Biochem. 4, 1-19.
65 Stanton, R. C. (2012) Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 64, 362-369.   DOI
66 Patra, K. C. and Hay, N. (2014) The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347-354.   DOI