• 제목/요약/키워드: phenotyping

검색결과 81건 처리시간 0.025초

Lycorine의 사람 구강 암 세포주에서 survivin 단백질 분해 증진으로 세포자멸사 유도 (Lycorine induces apoptosis by enhancing protein degradation of survivin in human oral cancer cell lines)

  • 정요셉;조남표;장분실
    • 대한구강악안면병리학회지
    • /
    • 제41권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Lycorine, a natural alkaloid extracted from the Amaryllidaceae plant family, was reported to various physiological and pharmacological effects including anti-cancer activity. Nevertheless, there is no report of the anticancer effect of lycorine in oral cancer cells. The effects of lycorine on cell proliferation and apoptosis were examined through trypan blue exclusion assay, 4'-6-diamidino-2-phenylindole (DAPI) stain, Live/Dead assay, Western blot analysis and RT-PCR. Lycorine suppressed cell viability and induced apoptosis in MC3 and HSC-3 cell lines. Lycorine decreased survivin protein but did not affect its mRNA. It regulated survivin through accelerating protein degradation in a time-dependent manner although neither proteasome nor lysosome was not associated with lycorine-mediated protein degradation. Collectively, our results suggest that lycorine may be a potential therapeutic anti-cancer drug candidate for the treatment of human oral cancer.

Heritability and Familiality of MMPI Personality Dimensions in the Korean Families with Schizophrenia

  • Jeong, Hee Jeong;Lee, Byung Dae;Park, Je Min;Lee, Young Min;Moon, Eunsoo;Kim, Soo Yeon;Lee, Kang Yoon;Suh, Hwagyu;Chung, Young In
    • Psychiatry investigation
    • /
    • 제15권12호
    • /
    • pp.1121-1129
    • /
    • 2018
  • Objective Categorical syndrome such as schizophrenia could be the complex of many continuous mental structure phenotypes including several personality development/degeneration dimensions. This is the study to search heritability and familiality of MMPI personality dimensions in the Korean schizophrenic LD (Linkage Disequilibrium) families. Methods We have recruited 204 probands (with schizophrenia) with their parents and siblings whenever possible. We have used MMPI questionnaires for measuring personality and symptomatic dimensions. Heritabilities of personality dimensions in total 543 family members were estimated using Sequential Oligogenic Linkage Analysis Routines (SOLAR). Personality dimensions in total family members were compared with those in 307 healthy unrelated controls for measuring the familialities using ANOVA analysis. Results Seven of the 10 MMPI variables were significantly heritable and were included in the subsequent analyses. The three groups (control, unaffected 1st degree relative, case) were found to be significantly different with the expected order of average group scores for all heritable dimensions. Conclusion Our results show that the aberrations in several personality dimensions could form the complexity of schizophrenic syndrome as a result of genetic-environment coactions or interactions in spite of some limitations (recruited family, phenotyping).

Development of PCR based approach to detect potential mosaicism in porcine embryos

  • Cho, Jongki;Uh, Kyungjun;Ryu, Junghyun;Fang, Xun;Bang, Seonggyu;Lee, Kiho
    • 한국동물생명공학회지
    • /
    • 제35권4호
    • /
    • pp.323-328
    • /
    • 2020
  • Direct injection of genome editing tools such as CRISPR/Cas9 system into developing embryos has been widely used to generate genetically engineered pigs. The approach allows us to produce pigs carrying targeted modifications at high efficiency without having to apply somatic cell nuclear transfer. However, the targeted modifications during embryogenesis often result in mosaicism, which causes issues in phenotyping founder animals and establishing a group of pigs carrying intended modifications. This study was aimed to establish a genomic PCR and sequencing system of a single blastomere in the four-cell embryos to detect potential mosaicism. We performed genomic PCR in four individual blastomeres from four-cell embryos. We successfully amplified target genomic region from single blastomeres of 4-cell stage embryo by PCR. Sanger sequencing of the PCR amplicons obtained from the blastomeres suggested that PCR-based genotyping of single blastomere was a feasible method to determine mutation type generated by genome editing technology such as CRISPR/Cas9 in early stage embryos. In conclusion, we successfully genotyped single blastomeres in a single 4-cell stage embryo to detect potential mosaicism in porcine embryos. Our approach offers a simple platform that can be used to screen the prevalence of mosaicism from designed CRISPR/Cas9 systems.

포장에서 작물의 뿌리분석을 위한 이미지 획득방법 (Imagery Acquisition Methods for Root Analysis in Crops under Field Conditions)

  • 김윤하
    • 한국작물학회지
    • /
    • 제66권4호
    • /
    • pp.452-458
    • /
    • 2021
  • 뿌리는 식물에서 양분과 수분을 흡수하는 가장 중요한 기관임에도 불구하고 분석방법에 어려움으로 인해 지상부에 비해 연구가 상대적으로 미비한 실정이다. 최근 이미지를 기반으로 작물의 표현형을 분석하는 기술이 급격하게 발달하고 있으며, 뿌리 연구에 있어서도 이미지를 다양하게 활용하고 있다. 뿌리분석은 목적에 따라 토양에서 분리 후 측정하는 방법과 토양에서 바로 측정하는 방식이 있으며, 각각의 방식들마다 장점과 단점이 있으므로 연구자의 상황에 맞게 활용할 수 있다. 이런 이유에서 본 리뷰에서는 이미지를 활용한 뿌리분석 방법들에 대해 소개하여 국내 연구자들의 뿌리 연구에 이용되기를 바란다.

Novel High-Throughput DNA Part Characterization Technique for Synthetic Biology

  • Bak, Seong-Kun;Seong, Wonjae;Rha, Eugene;Lee, Hyewon;Kim, Seong Keun;Kwon, Kil Koang;Kim, Haseong;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권8호
    • /
    • pp.1026-1033
    • /
    • 2022
  • This study presents a novel DNA part characterization technique that increases throughput by combinatorial DNA part assembly, solid plate-based quantitative fluorescence assay for phenotyping, and barcode tagging-based long-read sequencing for genotyping. We confirmed that the fluorescence intensities of colonies on plates were comparable to fluorescence at the single-cell level from a high-end, flow-cytometry device and developed a high-throughput image analysis pipeline. The barcode tagging-based long-read sequencing technique enabled rapid identification of all DNA parts and their combinations with a single sequencing experiment. Using our techniques, forty-four DNA parts (21 promoters and 23 RBSs) were successfully characterized in 72 h without any automated equipment. We anticipate that this high-throughput and easy-to-use part characterization technique will contribute to increasing part diversity and be useful for building genetic circuits and metabolic pathways in synthetic biology.

Evaluation of Arabinofuranosidase and Xylanase Activities of Geobacillus spp. Isolated from Some Hot Springs in Turkey

  • Sabriye, Canakci;Inan, Kadriye;Murat, Kacagan;Belduz, Ali Osman
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1262-1270
    • /
    • 2007
  • Some hot springs located in the west of Turkey were investigated with respect to the presence of thermophilic microorganisms. Based on phenotyping characteristics and 16S rRNA gene sequence analysis, 16 of the isolates belonged to the genus Geobacillus and grew optimally at about $60^{\circ}C$ on nutrient agar. 16S rRNA gene sequence analysis showed that these isolates resembled Geobacillus species by ${\ge}97%$, but SDS-PAGE profiles of these 16 isolates differ from some of the other species of the genus Geobacillus. However, it is also known that analysis of 16S rRNA gene sequences may be insufficient to distinguish between some species. It is proposed that recN sequence comparisons could accurately measure genome similarities for the Geobacillus genus. Based on recN sequence analysis, isolates 11, IT3, and 12 are strains of G stearothermophilus; isolate 14.3 is a strain of G thermodenitrificans; isolates 9.1, IT4.1, and 4.5 are uncertain and it is required to make further analysis. The presence of xylanase and arabinofuranosidase activities, and their optimum temperature and pH were also investigated. These results showed that 7 of the strains have both xylanase and arabinofuranosidase activities, 4 of them has only xylanase, and the remaning 5 strains have neither of these activities. The isolates 9.1, 7.1, and 3.3 have the highest temperature optima ($80^{\circ}C$), and 7.2, 9.1, AO4, 9.2, and AO17 have the highest pH optima (pH 8) of xylanase. Isolates 7.2, AO4, AC15, and 12 have optimum arabinofuranosidase activities at $75^{\circ}C$, and only isolate AC15 has the lowest pH of 5.5.

In Silico Evaluation of Deleterious SNPs in Chicken TLR3 and TLR4 Genes

  • Shin, Donghyun;Song, Ki-Duk
    • 한국가금학회지
    • /
    • 제45권3호
    • /
    • pp.209-217
    • /
    • 2018
  • The innate immune recognition is based on the detection of microbial products. Toll-like receptors (TLRs) located on the cell surface and the endosome senses microbial components and nucleic acids, respectively. Chicken TLRs mediate immune responses by sensing ligands from pathogens, have been studied as immune adjuvants to increase the efficacy of vaccines. Single nucleotide polymorphisms (SNPs) of TLR3 and TLR4 genes in chicken were associated with resistance and susceptibility to viral infection. In this study, SNPs of chTLR3 and chTLR4 genes were retrieved from public database and annotated with chicken reference genome. Three-dimensional models of the chTLR3 and chTLR4 proteins were built using a Swiss modeler. We identified 35 and 13 nsSNPs in chTLR3 and chTLR4 genes respectively. Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping v2 (Polyphen-2) analyses, suggested that, out of 35 and 13 nsSNPs, 4 and 2 SNPs were identified to be deleterious in chTLR3 and chTLR4 gene respectively. In chTLR3, 1 deleterious SNP was located in ectodomain and 3 were located in the Toll / IL-1 receptor (TIR) domain. Further structural model of chTLR3-TIR domain suggested that 1 deleterious SNP be present in the B-B loop region, which is important for TIR-TIR domain interactions in the downstream signaling. In chTLR4, the deleterious SNPs were located both in the ectodomain and TIR domain. SNPs predicted for chTLR3 and chTLR4 in this study, might be related to resistance or susceptible to viral infection in chickens. Results from this study will be useful to develop the effective measures in chicken against infectious diseases.

경기일부지역의 적혈구 항체선별검사의 실태조사 (Investigation of Red Cell Antiobody Screening Tests Gyeonggi Areas)

  • 김대중;성현호;박창은
    • 대한임상검사과학회지
    • /
    • 제48권1호
    • /
    • pp.36-40
    • /
    • 2016
  • 적혈구 동종면역은 수혈자와 공여자간의 적혈구 항원의 차이이다. 수혈을 위해서는 혈구형과 혈청형이 일치하지 않으면 적혈구 항체 선별 검사가 필요하며 불일치의 원인을 해명하는 것이 필수적이다. 적혈구 항체 선별검사는 임상적으로 유의한 항체를 검출하고, 신속 정확하며, 신뢰할 수 있는 방법으로 수혈에 앞서 우선적으로 하는 것을 권장한다. 본 연구자들은 다빈도로 검출된 E, D, M, E+c, C+e 항체에 대한 선별검사를 보고하였다. 따라서 이러한 결과로 항-D, 항-E의 항체가 신생아 용혈성 질환, 지연형 용혈성 수혈부작용 반응의 위험요인으로 인식하고자 한다. 또한 혈액안전관리를 적용하기 위해 적합한 항체선별검사가 요구되고, 수혈 위험요인의 선별에 있어 더 나은 효율성을 제공할 것이며 향후에 각 국가에 따라 실질적인 검출빈도를 찾는 연구가 필요할 것으로 사료된다.

Phenotypic and genotypic screening of rice accessions for salt tolerance

  • Reddy, Inja Naga Bheema Lingeswar;Kim, Sung-Mi;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.188-188
    • /
    • 2017
  • Rice (Oryza sativa L.) is one of the major crops that is seriously impacted by global soil salinization. Rice is among those crops where most of the high-yielding cultivars are highly sensitive to salinity. The key to a plant survival under NaCl salt stress is by maintaining a high $K^+/Na^+$ ratio in its cells. Selection for salinity tolerance genotypes of rice based on phenotypic performance alone is less reliable and will delay in progress in breeding. Recent advent of molecular markers, microsatellites or simple sequence repeats (SSRs) were used to find out salt tolerant rice genotypes. In the current experiment phenotyping and genotyping studies were correlated to differentiate different rice accessions for salinity tolerance. Eight rice accessions along with check plant Dongjin were screened by physiological studies using Yoshida solution with 50mM NaCl stress condition. The physiology studies identified four tolerant and four susceptible accessions based on their potassium concentration, sodium concentration, $K^+/Na^+$ ratio and biomass. 17 SSR markers were used to evaluate these rice accessions for salt tolerance out of which five molecular markers were able to discriminate tolerant accessions from the susceptible accessions. Banding pattern of the accessions was scored comparing to the banding pattern of Dongjin. The study identifies accessions based on their association of $K^+/Na^+$ ratio with molecular markers which is very reliable. These markers identified can play a significant role in screening large set of rice accessions for salt tolerance; these markers can be utilized to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.

  • PDF

Identification and molecular characterization of downy mildew resistant gene candidates in maize (Zea mays subsp. Mays)

  • Kim, Jae Yoon;Kim, Chang-Ho;Kim, Kyung Hee;Lee, Byung-Moo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.113-113
    • /
    • 2017
  • Downy mildew (DM), caused by several species in the Peronosclerospora and Scleropthora genera, is a major maize (Zea mays L.) disease in tropical or subtropical regions. DM is an obligate parasite species in the higher plants and spreads by oospores, wind, and mycelium in seed surface, soil, and living hosts. Owing to its geographical distribution and destructive yield reduction, DM is one of the most severe maize diseases among the maize pathogens. Positional cloning in combination with phenotyping is a general approach to identify disease resistant gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combination strategy to improve the identification of disease resistant gene candidates. Downy mildew (DM) resistant maize was selected from five cultivars using the spreader row technique. Positional cloning and bioinformatics tools identified the DM resistant QTL marker (bnlg1702) and 47 protein coding genes annotations. Eventually, 5 DM resistant gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative RT-PCR without fine mapping of the bnlg1702 locus. Specifically, we provided DM resistant gene candidates with our new strategy, including field selection by the spreader row technique without population preparation, the DM resistance region identification by positional cloning using bioinformatics tools, and expression level profiling by quantitative RT-PCR without fine mapping. As whole genome information is available for other crops, we propose applying our novel protocol to other crops or for other diseases with suitable adjustment.

  • PDF