Browse > Article
http://dx.doi.org/10.7740/kjcs.2021.66.4.452

Imagery Acquisition Methods for Root Analysis in Crops under Field Conditions  

Kim, Yoonha (Department of Applied Bioscience, Kyungpook National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.66, no.4, 2021 , pp. 452-458 More about this Journal
Abstract
Roots are the most important organs in plants that absorb nutrients and moisture from the soil. However, owing to difficulties in root data collection, root research is still poorly conducted as compared to shoot research. Recent advancements in crop phenotyping, through advanced imagery data, are rapidly increasing, and artificial intelligence has been applied in various crop root research. Depending on the purpose, different root analysis methods have been developed that measure roots directly in soil or after separation from the soil. Each method has its advantages and disadvantages; therefore, it can be used in accordance with the research interest. Therefore, this review introduces root analysis methods that use imagery systems to help domestic researchers precisely study plant roots or root architecture.
Keywords
root architecture; root image; root phenotype; root research;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Busch, J., I. A. Mendelssohn, B. Lorenzen, H. Brix, and S. Miao. 2006. A rhizotron to study root growth under flooded conditions tested with two wetland Cyperaceae. Flora. 201(6) : 429-439.   DOI
2 Das, A., H. Schneider, J. Burridge, A. K. M. Ascanio, T. Wojciechowski, C. N. Topp, J. P. Lynch, J. S. Weitz, and A. Bucksch. 2015. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Methods. 11(1) : 1-12.   DOI
3 Kim, D. W., Y. Kim, K. H. Kim, H. J. Kim, and Y. S. Chung. 2019. Case study: Cost-effective weed patch detection by multi-spectral camera mounted on unmanned aerial vehicle in the buckwheat field. Korean J. Crop Sci. 64(2) : 159-164.   DOI
4 Lobet, G., X. Draye, and C. Perilleux. 2013. An online database for plant image analysis software tools. Plant Methods 9: 1-7.   DOI
5 Pang, W., W. T. Crow, J. E. Luc, R. McSorley, R. M. GiblinDavis, K. E. Kenworthy, and J. K. Kruse. 2011. Comparison of water displacement and WinRHIZO software for plant root parameter assessment. Plant Dis. 95(10) : 1308-1310.   DOI
6 Wachsman, G., E. E. Sparks, P. N. B. 2015. Genes and networks regulating root anatomy and architecture. New Phytol. 208: 26-38.   DOI
7 Water, A., F. Liebisch, and A. Hund. 2015. Plant phenotyping: from bean weight to image analysis. Plant Method.
8 Zhao, J., G. Bodner, B. Rewald, D. Leitner, K. A. Nagel, and A. Nakhforoosh, 2017. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems. J. Exp. Bot. 68 : 965-982.   DOI
9 Bucksch, A., J. Burridge, L. M. York, A. Das, E. Nord, J. S. Weitz, and J. P. Lynch. 2014. Image-based high-throughput field phenotyping of crop roots. Plant Physiol. 166(2) : 470-489.   DOI
10 Chung, Y. S., U. Lee, S. Heo, R. R. Silva, C. I. Na, and Y. Kim. 2020. Image-based machine learning characterizes root nodule in soybean exposed to silicon. Front. Plant Sci. 11 : 520161.   DOI
11 Cai, G. J. Vanderborght, A. Klotzsche, J. Kruk, J. Neumann, N. Hermes, H. Vereecken. 2016. Vadose Zone J. 15(9) : vzj2016.05.0043.   DOI
12 Kim, Y., Y. S. Chung, E. Lee, P. Tripathi, S. Heo, and K. H. Kim. 2020. Root response to drought stress in rice (Oryza sativa L.). Int. J. Mol. Sci. 21 : 1513.   DOI
13 Noh, T. K. and D. S. Kim. 2018. Weed research using plant image science. Weed Turf. Sci. 7(4) : 285-296.   DOI
14 Trachsel, S., S. M. Kaeppler, K. M. Brown, and J. P. Lynch, 2010. Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil. 341 : 75-87.   DOI
15 Tripathi, P., S. Subedi, A. L. Khan. Y. S. Chung, and Y. Kim. 2021. Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants. 10 : 885.   DOI
16 Yamaguchi, J. 2002. Measurement of root diameter in field-grown crop under a miscroscope without washing. Soil Sci. Plant Nut. 48(4) : 625-629.   DOI
17 Kim, K. S., S. H. Kim, J. Kim, P. Tripathi, J. D. Lee, Y. S. Chung, and Y. Kim. 2021. A large root phenome dataset wide-opened the potential for underground breeding in soybean. Front. Plant Sci. 12 : 704239.   DOI
18 Ma, J. F., S. Goto, K. Tamai, and M. Ichii, 2001. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 127(4) : 1773-1780.   DOI
19 Iversen, C. M., M. T. Murphy, M. F. Allen, J. Childs, D. M. Eissenstat, E. A. Lilleskov, T. M. Sarjala, V. L. Sloan, and P. F. Sullivan. 2012. Advancing the use of minirhizotrons in wetlands. Plant Soil. 352(1) : 23-39.   DOI