• Title/Summary/Keyword: phenotypic selection

Search Result 216, Processing Time 0.018 seconds

Future Development of Genetics and the Broiler (BROILER 육종기술의 전망)

  • 오봉국
    • Korean Journal of Poultry Science
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 1981
  • In trying to predict the effect of genetics on the broiler in the year 2000, this is a relatively short period of time as far as broiler genetics in concerned. Modern broiler genetics started around 1945 and tremendous gains when made in past 35 years. Futher improvements on broiler will depend on the evolution and revolution: 1. Evolution: (1) Growth rate has been made 4-5% per year. (2) Feed conversion has improved approximately 1% per year. (3) Abdominal fat is becoming a major complaint in broiler. (4) Because of the changing life-style, broiler meat sales in the future will be more and more in cut-up form. (5) Breeding for stress resistance and selection for docile temperament can be important in order to funker improve fled efficiency. (6) In female parent stock, reproduction characteristics are in many can negatively correlated with the desired broiler traits. (7) Egg production and hatchability in moot commercial parent nod m at a fairly high level. (8) In male parent stock, the heavier and mon super-meat-type male lines are desired to Product better broilers. 2. Revolution: Trying to forecast revolutionary change in broiler genetics is highly speculative, as sudden change are aften unpredictable. (1) Species hybridization, such as a turkey-chicken cross (2) Biochemical tools, such as blood typing. (3) Mutation breeding by radiation or chemical mutagentia. (4) Broiler breeding would be to change the phenotypic appearance by single gene, such as naked, wingless. (5) Changes in production techniques. such as growing in cage or growing in filtered air positive pressure houses.

  • PDF

Potential Allelic Association of Microsatellite Markers on Chromosome 1 with Economic Traits in Korean Native Chicken (한국재래닭 1번 염색체내 초위성체 유전표지를 이용한 경제형질 연관 지역 탐색)

  • Kim, H.K.;Oh, J.D.;Kang, B.S.;Park, M.N.;Chae, E.J.;Jung, H.M.;Seo, O.S.;Choe, H.S.;Jeon, G.J.;Lee, H.K.;Kong, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.2
    • /
    • pp.163-169
    • /
    • 2008
  • A total of 17 polymorphic microsatellite markers on chromosome 1 were used for allelic association tests with phenotypic traits in Korean native chicken. Chi-square tests were performed to compare the frequencies of individual alleles between the high and the low trait groups. The frequency of allele 123 of MCW0160 showed a significant difference between the high and the low groups in the trait of egg weight (EW). Three markers, namely ADL0234, UMA1.125 and ADL0101, were found to show significant differences in allelic distribution for the trait of the first lay day (FLD). UMA1.117, ADL0020, UMA 1.019, LMA1 and ADL0238 were found to show significant differences in allelic distribution for the trait of body weight (BW). ADL0101 and ADL0238 were found to show significant differences in allelic distribution for the trait of number of egg production(EP). In this study, we identified the QTL for economic traits at around 94 (MCW0160), 151 (ADL0234), 170 (UMA1.125), 225 (UMA1.117), 285 (ADL0020), 387 (UMA1.019), 418 (LMA1), 500 (ADL0101) and 520 (ADL0238) cM on chromosome 1 in Korean native chicken. The results provided a useful guideline for identification of positional candidate gene and marker-assisted selection for economic traits in Korean native chicken.

QTL Analysis of Seed and Growth Traits using RIL Population in Soybean (콩 종실 및 생육형질 연관 분자표지 탐색)

  • Kim, Jeong-Soon;Song, Mi-Hee;Lee, Janf-Yong;Ahn, Sang-Nag;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • An RIL population from a Shinpaldalkong2/GC83006 cross was employed to identify quantitative trait loci (QTL) associated with agronomic traits in soybean. The genetic map consisted of 127 loci which covered about 3,000cM and were assigned into 20 linkage groups. Phenotypic data were collected for the following traits; plant height, leaf area, flowering time, pubescence color, seed coat color and hilum color in 2005. Seed weight was evaluated using seeds collected in 2003 to 2005 at Suwon and in 2005 at Pyeongchang and Miryang sites. Three QTLs were associated with 100-seed weight in the combined analysis across three years. Among the three QTLs related to seed weight, all GC83006 alleles on LG O ($R^2\;=\;12.5$), LG A1 ($R^2\;=\;10.1$) and LG C2 ($R^2\;=\;11.5$) increased the seed weight. A QTL conditioning plant height was linked to markers including Satt134 (LG C2, $R^2\;=\;25.4$), and the GC83006 allele increased plant height at this QTL locus. For two QTLs related to leaf area, 1aM on LG M ($R^2\;=\;10.0$) and laL on LG L ($R^2\;=\;8.6$), the Shinpaldalkong2 alleles had positive effect to increase the leaf area. Satt134 on LG C2 ($R^2\;=\;41.0$) was associated with QTL for days to flowering. Satt134 (LG C2) showed a linkage to a gene for pubescence color. Satt363 (LG C2) and Satt354 (LG I) were linked to the hilum color gene, and Sat077 (LG D1a) was linked to the seed coat color. The QTL conditioning plant height was in the similar genomic location as the QTLs for days to flowering in this population, indicating pleiotropic effect of one gene or the tight linkage of several genes. These linked markers would be useful in marker assisted selection for these traits in a soybean breeding program.

Estimation of Linkage Disequilibrium and Effective Population Size using Whole Genome Single Nucleotide Polymorphisms in Hanwoo (한우에서 전장의 유전체 정보를 활용한 연관불평형 및 유효집단크기 추정에 관한 연구)

  • Cho, Chung-Il;Lee, Joon-Ho;Lee, Deuk-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.366-372
    • /
    • 2012
  • This study was conducted to estimate the extent of linkage disequilibrium (LD) and effective population size using whole genomic single nucleotide polymorphisms (SNP) genotyped by DNA chip in Hanwoo. Using the blood samples of 35 young bulls born from 2005 to 2008 and their progenies (N=253) in a Hanwoo nucleus population collected from Hanwoo Improvement Center, 51,582 SNPs were genotyped using Bovine SNP50 chips. A total of 40,851 SNPs were used in this study after elimination of SNPs with a missing genotyping rate of over 10 percent and monomorphic SNPs (10,730 SNPs). The total autosomal genome length, measured as the sum of the longest syntenic pairs of SNPs by chromosome, was 2,541.6 Mb (Mega base pairs). The average distances of all adjacent pairs by each BTA ranged from 0.55 to 0.74 cM. Decay of LD showed an exponential trend with physical distance. The means of LD ($r^2$) among syntenic SNP pairs were 0.136 at a range of 0-0.1 Mb in physical distance and 0.06 at a range of 0.1-0.2 Mb. When these results were used for Luo's formula, about 2,000 phenotypic records were found to be required to achieve power > 0.9 to detect 5% QTL in the population of Hanwoo. As a result of estimating effective population size by generation in Hanwoo, the estimated effective population size for the current status was 84 heads and the estimate of effective population size for 50 generations of ancestors was 1,150 heads. The average decreasing rates of effective population size by generation were 9.0% at about five generations and 17.3% at the current generation. The main cause of the rapid decrease in effective population size was considered to be the intensive use of a few prominent sires since the application of artificial insemination technology in Korea. To increase and/or sustain the effective population size, the selection of various proven bulls and mating systems that consider genetic diversity are needed.

Identification of Leaf Blast Resistance Genes Derived from a Korean Weedy Rice, Ganghwaaengmi 11 (잡초성벼인 강화앵미11 유래 잎도열병 저항성 유전자 탐색)

  • Suh, Jung-Pil;Cho, Young-Chan;Kim, Jeong-Ju;Shin, Young-Seop;Yang, Chang-Ihn;Roh, Jae-Hwan;Kim, Yeon-Gyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.390-396
    • /
    • 2010
  • A weedy rice, Ganghwaaengmi 11, shows high level of leaf blast resistance. The chromosomal number and locations of genes conferring the leaf blast resistance were detected by QTL (quantitative trait loci) analysis using SSR markers in the 120 RILs (recombinant inbred lines) derived from the cross between Nagdongbyeo and Ganghwaaengmi 11. Ganghwaaengmi 11 expressed compatibility with 20 of the 45 inoculated blast isolates, in contrast to Nagdongbyeo with 44 compatible isolates. To identify QTLs affecting partial resistance, RILs were assessed in upland blast nursery in three regions and inoculated with selected nine blast isolates. QTLs for resistance to blast isolates were identified on chromosomes 7, 11 and 12. Three QTLs associated with blast resistance in nursery test at three regions were also detected on chromosomes 7, 11 and 12. The QTL commonly detected on chromosome 12 was only increased blast resistance by Ganghwaaengmi 11 allele. This QTL accounted for 60.3~78.6% of the phenotypic variation in the blast nursery test. OSR32 and RM101 markers tightly linked to QTL for blast resistance on chromosome 12 might be useful for marker-assisted selection (MAS) and gene pyramiding to improve the blast resistance of japonica rice.

Phenotypic Variation in the Breast of Live Broiler Chickens Over Time (시간에 따른 생축 육계 가슴살의 표현형 변이)

  • Ji-Won Kim;Chang-Ho Han;Seul-Gy Lee;Jun-Ho Lee;Su-Yong Jang;Jeong-Uk Eom;Kang-Jin Jeong;Jae-Cheol Jang;Hyun-Wook Kim;Han-Sul Yang;Sea-Hwan Sohn;Sang-Hyon Oh
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • This study utilized the non-invasive MyotonPRO® device to analyze the stiffness in breast muscles of commercial broilers (Ross 308 and Arbor Acres) and compared these findings with data reported for Ross 708, where Woody Breast (WB) symptoms had been previously documented. The research revealed that Ross 308 and Arbor Acres displayed relatively lower stiffness values compared to Ross 708, suggesting a lack of WB expression. These results indicate differentiation in breast muscle traits across strains and underscore the necessity for further research into factors influencing WB manifestation. The study also measured additional muscle tone characteristics such as Frequency, Decrement, Relaxation, and Creep across various growth stages (2, 4, 6, and 8 weeks), finding significant variations with pronounced severity at weeks 2 and 8. An increase in stiffness was observed as the broilers aged, pointing to potential growth-related or stress-induced changes affecting WB severity. A strong positive correlation was established between increased breast meat weight and WB severity, highlighting that heavier breast meat could exacerbate the condition. This correlation is vital for the poultry industry, suggesting that weight management could help mitigate WB effects. Moreover, the potential for genetic selection and breeding strategies to reduce WB occurrence was emphasized, which could aid in enhancing management practices in commercial poultry production. Collectively, these insights contribute to a deeper understanding of WB in broilers and propose avenues for future research and practical strategies to minimize its impact.