Browse > Article
http://dx.doi.org/10.5536/KJPS.2008.35.2.163

Potential Allelic Association of Microsatellite Markers on Chromosome 1 with Economic Traits in Korean Native Chicken  

Kim, H.K. (Poulrty Science Division, National Institute of Animal Science, RDA)
Oh, J.D. (Poulrty Science Division, National Institute of Animal Science, RDA)
Kang, B.S. (Poulrty Science Division, National Institute of Animal Science, RDA)
Park, M.N. (Poulrty Science Division, National Institute of Animal Science, RDA)
Chae, E.J. (Poulrty Science Division, National Institute of Animal Science, RDA)
Jung, H.M. (Poulrty Science Division, National Institute of Animal Science, RDA)
Seo, O.S. (Poulrty Science Division, National Institute of Animal Science, RDA)
Choe, H.S. (School of Animal Science & Biotechnology, Chonbuk National University)
Jeon, G.J. (Genomic Informatics Center, Hankyong National University)
Lee, H.K. (Genomic Informatics Center, Hankyong National University)
Kong, H.S. (Genomic Informatics Center, Hankyong National University)
Publication Information
Korean Journal of Poultry Science / v.35, no.2, 2008 , pp. 163-169 More about this Journal
Abstract
A total of 17 polymorphic microsatellite markers on chromosome 1 were used for allelic association tests with phenotypic traits in Korean native chicken. Chi-square tests were performed to compare the frequencies of individual alleles between the high and the low trait groups. The frequency of allele 123 of MCW0160 showed a significant difference between the high and the low groups in the trait of egg weight (EW). Three markers, namely ADL0234, UMA1.125 and ADL0101, were found to show significant differences in allelic distribution for the trait of the first lay day (FLD). UMA1.117, ADL0020, UMA 1.019, LMA1 and ADL0238 were found to show significant differences in allelic distribution for the trait of body weight (BW). ADL0101 and ADL0238 were found to show significant differences in allelic distribution for the trait of number of egg production(EP). In this study, we identified the QTL for economic traits at around 94 (MCW0160), 151 (ADL0234), 170 (UMA1.125), 225 (UMA1.117), 285 (ADL0020), 387 (UMA1.019), 418 (LMA1), 500 (ADL0101) and 520 (ADL0238) cM on chromosome 1 in Korean native chicken. The results provided a useful guideline for identification of positional candidate gene and marker-assisted selection for economic traits in Korean native chicken.
Keywords
QTL; microsatellite marker; chromosome 1; Korean native chicken;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MA, Delany ME 2004 Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695-716   DOI   ScienceOn
2 VanKaam JB, Groenen MA, Bovenhuis H, Veenendaal A, Vereijken AL, VanArendonk JA 1999 Whole genome scan in chickens for quantitative trait loci affecting carcass traits. Poult Sci 78:1091-1099   DOI
3 Schreiweis MA, Hester PY, Moody DE 2005 Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens. Genet Sel Evol 37(6):677-98   DOI   ScienceOn
4 DeKoning DJ, Haley CS, Windsor D, Hocking PM, Griffin H, Morris A, Vincent J, Burt DW 2004 Segregation of QTL for production traits in commercial meat-type chickens. Genet Res 83(3):211-20   DOI   ScienceOn
5 Markljung E, Braunschweig MH, Karlskov-Mortensen P, Bruun CS, Sawera M, Cho IC, Hedebro-Velander I, Josell A, Lundstrom K, von Seth G, Jorgensen CB, Fredholm M, Andersson L 2008 Genome-wide identification of quantitative trait loci in a cross between Hampshire and Landrace II: meat quality traits. BMC Genet 28:9(1):22
6 Schrooten C, Bink MC, Bovenhuis H 2004 Whole genome scan to detect chromosomal regions affecting multiple traits in dairy cattle. J Dairy Sci 87(10):3550-60   DOI   ScienceOn
7 Groenen MA, Cheng HH, Bumstead N, Benkel BF, Briles WE, Burke T, Burt DW, Crittenden LB, Dodgson J, Hillel J, Lamont S, de Leon AP, Soller M, Takahashi H, Vignal A 2000 A consensus linkage map of the chicken genome. Genome Res 10:137-147
8 Sasaki O, Odawara S, Takahashi H, Nirasawa K, Oyamada Y, Yamamoto R, Ishii K, Nagamine Y, Takeda H, Kobayashi E, Furukawa T 2004 Genetic mapping of quantitative trait loci affecting body weight, egg characterand egg production in $F_2$ intercross chickens. Animal Genetics 35(3):188-194   DOI   ScienceOn
9 Schmid M., Nanda I, Guttenbach M, Steinlein C, Hoehn M, Schartl M, Haaf T, Weigend S, Fries R, Buerstedde JM, Wimmers K, Burt DW, Smith J, A'Hara S, Law A, Griffin DK, Bumstead N, Kaufman J, Thomson PA, Burke T, Groenen MA, Crooijmans RP, Vignal A, Fillon V, Morisson M, Pitel F, Tixier-Boichard M, Ladjali-Mohammedi K, Hillel J, Maki-Tanila A, Cheng HH, Delany ME, Burnside J, Mizuno S 2000 First report on chicken genes and chromosomes. Cytogenet Cell Genet 90:169-218   DOI
10 McElroy JP, Kim JJ, Harry DE, Brown SR, Dekkers JCM, Lamont SJ 2006 Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens. Poultry Science 85:593-605   DOI
11 Sewalem A, Morrice DM, Law A, Windsor D, Haley CS, Ikeobi CO, Burt DW, Hocking PM 2002 Mapping of quantitative trait loci for body weight at three, six, and nine weeksof age in a broiler layer cross. Poult Sci 81(12):1775-1781   DOI
12 Weinshilboum R, Wang L 2004 Pharma-cogenomics: Bench to bedside. Nat Rev Drug Discov 3(9):739-748   DOI   ScienceOn
13 Hansen C, Yi N, Zhang YM, Xu S, Gavora J, Cheng HH 2005 Identification of QTL for production traits in chickens. Anim Biotechnol 16(1):67-79   DOI   ScienceOn
14 VanKaam JB, VanArendonk JA, Groenen MA, Bovenhuis H, Vereijken AL, Crooijmans RP, VanDerPoel JJ, Veenendaal A 1998 Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. Livest Prod Sci 54:133-150   DOI   ScienceOn
15 Ikeobi CON, Woolliams JA, Morrice DR, Law A, Windsor D, Burt DW, Hocking PM 2004 Quantitative trait loci for meat yield and muscle distribution in a broiler layer cross. Livestock Production Science 87:143-151   DOI   ScienceOn
16 Kerje S, Carlborg O, Jacobsson L, Schutz K, Hartmann C, Jensen P, Andersson L 2003. The twofold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Animal Genetics 34:264-274   DOI   ScienceOn
17 Park HB, Jacobsson L, Wahlberg P, Siegel PB, Andersson L 2006 QTL analysis of body composition and metabolic traits in an intercross betweenchicken lines divergently selected for growth. Physiol Genomics 25(2):216-223   DOI   ScienceOn